Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Amendment history:
  • Correction (March 1997)

Research Article Free access | 10.1172/JCI118909

The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice.

H C Yen, T D Oberley, S Vichitbandha, Y S Ho, and D K St Clair

University of Kentucky, Graduate Center for Toxicology, Lexington 40536, USA.

Find articles by Yen, H. in: JCI | PubMed | Google Scholar

University of Kentucky, Graduate Center for Toxicology, Lexington 40536, USA.

Find articles by Oberley, T. in: JCI | PubMed | Google Scholar

University of Kentucky, Graduate Center for Toxicology, Lexington 40536, USA.

Find articles by Vichitbandha, S. in: JCI | PubMed | Google Scholar

University of Kentucky, Graduate Center for Toxicology, Lexington 40536, USA.

Find articles by Ho, Y. in: JCI | PubMed | Google Scholar

University of Kentucky, Graduate Center for Toxicology, Lexington 40536, USA.

Find articles by St Clair, D. in: JCI | PubMed | Google Scholar

Published September 1, 1996 - More info

Published in Volume 98, Issue 5 on September 1, 1996
J Clin Invest. 1996;98(5):1253–1260. https://doi.org/10.1172/JCI118909.
© 1996 The American Society for Clinical Investigation
Published September 1, 1996 - Version history
View PDF
Abstract

Adriamycin (ADR) is a potent anticancer drug known to cause severe cardiac toxicity. Although ADR generates free radicals, the role of free radicals in the development of cardiac toxicity and the intracellular target for ADR-induced cardiac toxicity are still not well understood. We produced three transgenic mice lines expressing increased levels of human manganese superoxide dismutase (MnSOD), a mitochondrial enzyme, as an animal model to investigate the role of ADR-mediated free radical generation in mitochondria. The human MnSOD was expressed, functionally active, and properly transported into mitochondria in the heart of transgenic mice. The levels of copper-zinc SOD, catalase, and glutathione peroxidase did not change in the transgenic mice. Electron microscopy revealed dose-dependent ultrastructural alterations with marked mitochondrial damage in nontransgenic mice treated with ADR, but not in the transgenic littermates. Biochemical analysis indicated that the levels of serum creatine kinase and lactate dehydrogenase in ADR-treated mice were significantly greater in nontransgenic than their transgenic littermates expressing a high level of human MnSOD after ADR treatment. These results support a major role for free radical generation in ADR toxicity as well as suggesting mitochondria as the critical site of cardiac injury.

Version history
  • Version 1 (September 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts