Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Imprinting of the Gsα gene GNAS1 in the pathogenesis of acromegaly
Bruce E. Hayward, … , Alain Enjalbert, David T. Bonthron
Bruce E. Hayward, … , Alain Enjalbert, David T. Bonthron
Published March 15, 2001
Citation Information: J Clin Invest. 2001;107(6):R31-R36. https://doi.org/10.1172/JCI11887.
View: Text | PDF
Rapid Publication

Imprinting of the Gsα gene GNAS1 in the pathogenesis of acromegaly

  • Text
  • PDF
Abstract

Approximately 40% of growth hormone–secreting pituitary adenomas have somatic mutations in the GNAS1 gene (the so-called gsp oncogene). These mutations at codon 201 or codon 227 constitutively activate the α subunit of the adenylate cyclase–stimulating G protein Gs. GNAS1 is subject to a complex pattern of genomic imprinting, its various promoters directing the production of maternally, paternally, and biallelically derived gene products. Transcripts encoding Gsα are biallelically derived in most human tissues. Despite this, we show here that in 21 out of 22 gsp-positive somatotroph adenomas, the mutation had occurred on the maternal allele. To investigate the reason for this allelic bias, we also analyzed GNAS1 imprinting in the normal adult pituitary and found that Gsα is monoallelically expressed from the maternal allele in this tissue. We further show that this monoallelic expression of Gsα is frequently relaxed in somatotroph tumors, both in those that have gsp mutations and in those that do not. These findings imply a possible role for loss of Gsα imprinting during pituitary somatotroph tumorigenesis and also suggest that Gsα imprinting is regulated separately from that of the other GNAS1 products, NESP55 and XLαs, imprinting of which is retained in these tumors.

Authors

Bruce E. Hayward, Anne Barlier, Márta Korbonits, Ashley B. Grossman, Philippe Jacquet, Alain Enjalbert, David T. Bonthron

×

Usage data is cumulative from August 2021 through August 2022.

Usage JCI PMC
Text version 385 85
PDF 30 10
Figure 51 0
Citation downloads 12 0
Totals 478 95
Total Views 573
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts