Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118853

Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma.

W Palinski, S Hörkkö, E Miller, U P Steinbrecher, H C Powell, L K Curtiss, and J L Witztum

Department of Medicine, University of California, San Diego 92093, USA. wpalinski@ucsd.edu

Find articles by Palinski, W. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92093, USA. wpalinski@ucsd.edu

Find articles by Hörkkö, S. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92093, USA. wpalinski@ucsd.edu

Find articles by Miller, E. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92093, USA. wpalinski@ucsd.edu

Find articles by Steinbrecher, U. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92093, USA. wpalinski@ucsd.edu

Find articles by Powell, H. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92093, USA. wpalinski@ucsd.edu

Find articles by Curtiss, L. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92093, USA. wpalinski@ucsd.edu

Find articles by Witztum, J. in: PubMed | Google Scholar

Published August 1, 1996 - More info

Published in Volume 98, Issue 3 on August 1, 1996
J Clin Invest. 1996;98(3):800–814. https://doi.org/10.1172/JCI118853.
© 1996 The American Society for Clinical Investigation
Published August 1, 1996 - Version history
View PDF
Abstract

Many reactive products may be formed when LDL undergoes lipid peroxidation, which in turn can react with lipids, apoproteins, and proteins, generating immunogenic neoepitopes. Autoantibodies recognizing model epitopes of oxidized low density lipoprotein, such as malondialdehydelysine, occur in plasma and in atherosclerotic lesions of humans and animals. Because apo E-deficient mice develop particularly high titers of such autoantibodies, we used their spleens to clone 13 monoclonal antibodies to various epitopes of oxidized LDL ("E0 antibodies"). Binding and competitive RIAs demonstrated significant differences in fine specificity even between E0 antibodies initially selected for binding to the same screening antigen. For example, some E0 antibodies selected for binding to malondialdehyde-LDL also recognized copper oxidized LDL, acrolein-LDL, or LDL modified by arachidonic or linoleic acid oxidation products. Circulating IgG and IgM autoantibodies binding to copper-oxidized LDL, 4-hydroxynonenal-LDL, acrolein-LDL, and LDL modified with arachidonic or linoleic acid oxidation products were found in apo E-deficient mice, suggesting that the respective antigens are formed in vivo. Epitopes recognized by some of the E0 monoclonal antibodies were also found on human circulating LDL. Each of the E0 monoclonal antibodies immunostained rabbit and human atherosclerotic lesions, and some of them yielded distinct staining patterns in advanced lesions. Together, this suggests that the natural monoclonal antibodies recognize different epitopes of complex structures formed during oxidation of lipoproteins, or epitopes formed independently at different lesion sites. Our data demonstrate that a profound immunological response to a large number of different epitopes of oxidized lipoproteins occurs in vivo. The availability of "natural" monoclonal autoantibodies should facilitate the identification of specific epitopes inducing this response.

Version history
  • Version 1 (August 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts