Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118779

Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients.

H Fukaura, S C Kent, M J Pietrusewicz, S J Khoury, H L Weiner, and D A Hafler

Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Find articles by Fukaura, H. in: JCI | PubMed | Google Scholar

Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Find articles by Kent, S. in: JCI | PubMed | Google Scholar

Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Find articles by Pietrusewicz, M. in: JCI | PubMed | Google Scholar

Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Find articles by Khoury, S. in: JCI | PubMed | Google Scholar

Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Find articles by Weiner, H. in: JCI | PubMed | Google Scholar

Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Find articles by Hafler, D. in: JCI | PubMed | Google Scholar

Published July 1, 1996 - More info

Published in Volume 98, Issue 1 on July 1, 1996
J Clin Invest. 1996;98(1):70–77. https://doi.org/10.1172/JCI118779.
© 1996 The American Society for Clinical Investigation
Published July 1, 1996 - Version history
View PDF
Abstract

Oral administration of antigen is a long recognized method of inducing systemic immune tolerance. In animals with experimental autoimmune disease, a major mechanism of oral tolerance triggered by oral administration of antigen involves the induction of regulatory T cells that mediate active suppression by secreting the cytokine TGF-beta 1. Multiple sclerosis (MS) is a presumed T cell-mediated Th1 type autoimmune disease. Here, we investigated whether in MS patients oral myelin treatment, containing both myelin basic protein (MBP) and proteolipid protein (PLP), induced antigen specific MBP or PLP reactive T cells that either secreted IL4, TGF-beta1, or alternatively did Th1 type sensitization occur as measured by IFN-gamma secretion. Specifically, 4,860 short-term T cell lines were generated to either MBP, PLP, or tetanus toxoid (TT) from 34 relapsing-remitting MS patients: 17 orally treated with bovine myelin daily for a minimum of 2 yr as compared to 17 nontreated patients. We found a marked increase in the relative frequencies of both MBP and PLP specific TGF-beta1-secreting T cell lines in the myelin treated MS patients as compared to non-treated MS patients (MBP P < 0.001, PLP P < 0.003). In contrast, no change in the frequency of MBP or PLP specific IFN-gamma or TT specific TGF-beta1 secreting T cells were observed. These results suggest that the oral administration of antigens generates antigen specific TGF-beta1 secreting Th3 cells of presumed mucosal origin that represent a distinct lineage of T cells. Since antigen-specific TGF-beta1 secreting cells localize to the target organ and then suppress inflammation in the local microenvironment, oral tolerization with self antigens may provide a therapeutic approach for the treatment of cell-mediated autoimmune disease which does not depend upon knowledge of the antigen specificity of the original T cell clone triggering the autoimmune cascade.

Version history
  • Version 1 (July 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts