Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Immunization with T cell receptor V beta chain peptides deletes pathogenic T cells and prevents the induction of collagen-induced arthritis in mice.
T M Haqqi, … , J Ma, M S Sy
T M Haqqi, … , J Ma, M S Sy
Published June 15, 1996
Citation Information: J Clin Invest. 1996;97(12):2849-2858. https://doi.org/10.1172/JCI118741.
View: Text | PDF
Research Article

Immunization with T cell receptor V beta chain peptides deletes pathogenic T cells and prevents the induction of collagen-induced arthritis in mice.

  • Text
  • PDF
Abstract

Collagen-induced arthritis (CIA) in susceptible strains of mice is an animal model of T cell-mediated inflammatory polyarthritis. Analysis of T cell receptor (TCR) V beta gene usage in cells isolated from arthritic joints of BUB/BnJ (BUB) mice (H-2q, TCR V beta a) showed that TCR V beta chain gene usage was limited to TCR V beta 3 and V beta 10 gene families. All of the BUB mice immunized with a mixture of TCR V beta 3 and TCR V beta 10 peptides, but not with control TCR V beta 14 peptide, were refractory to the induction of CIA. Immunization with TCR V beta 3 and V beta 10 peptides completely blocked the development of clinical and subclinical inflammation, formation of pannus and synovial hyperplasia, and the erosion of cartilage and bone. Further studies revealed that preimmunization of BUB mice with V beta 10 peptide alone was sufficient to render the mice resistant to CIA. Analysis of TCR V beta chain gene expression in lymph node cells from arthritic and arthritis-protected mice showed the expression of TCR V beta 10 subfamily in all of the arthritic mice, but not in arthritis-protected mice. Immunization with TCR V beta peptides did not diminish the humoral responses to chicken type-II collagen and also elicited significant levels of anti-V beta 3 and anti-V beta 10 peptide antibodies. Antibodies cross-reactive with mouse chicken type-II collagen were detected in both the arthritic and arthritis-protected mice. Adoptive transfer of serum from arthritis-protected BUB mice significantly delayed the onset (P < 0.005) of arthritis in recipient BUB mice. In contrast, mice injected with serum from arthritic mice had early onset of arthritis. These results demonstrate that immunization of BUB mice with TCR V beta chain peptides elicited antibodies reactive with the self-TCR and prevented the induction of collagen-induced arthritis by eliminating or downregulating pathogenic T cells and consequently blocking the development of humoral immune response. These findings may have clinical applications in treating human autoimmune diseases characterized by common TCR gene usage.

Authors

T M Haqqi, X M Qu, D Anthony, J Ma, M S Sy

×

Full Text PDF | Download (451.05 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts