Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy.
D Lin, … , E Homsher, L S Tobacman
D Lin, … , E Homsher, L S Tobacman
Published June 15, 1996
Citation Information: J Clin Invest. 1996;97(12):2842-2848. https://doi.org/10.1172/JCI118740.
View: Text | PDF
Research Article

Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy.

  • Text
  • PDF
Abstract

Familial hypertrophic cardiomyopathy (HCM) can be caused by dominant missense mutations in cardiac troponin T (TnT), alpha-tropomyosin, C-protein, or cardiac myosin heavy chain genes. The myosin mutations are known to impair function, but any functional consequences of the TnT mutations are unknown. This report describes the in vitro function of troponin containing an IIe91Asn mutation in rat cardiac TnT, corresponding to the HCM-causing Ile79Asn mutation in man. Mutant and wild-type TnT cDNAs were expressed in bacteria and the proteins purified and reconstituted with the other troponin subunits, the mutation had no effect on troponin's affinity for tropomyosin, troponin-induced binding of tropomyosin to actin, cooperative binding of myosin subfragment 1 to the thin filament, CA(2+)-sensitive regulation of thin filament-myosin subfragment 1 ATPase activity, or the CA2+ concentration dependence of this regulation. However, the mutation resulted in 50% faster thin filament movement over a surface coated with heavy meromyosin in in vitro motility assays. The increased sliding speed suggests an unexpected role for the amino terminal region of TnT in which this mutation occurs. The relationship between this faster motility and altered cardiac contraction in patients with HCM is discussed.

Authors

D Lin, A Bobkova, E Homsher, L S Tobacman

×

Full Text PDF | Download (214.85 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts