Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle.
D E Kelley, … , J Beattie, R Thériault
D E Kelley, … , J Beattie, R Thériault
Published June 15, 1996
Citation Information: J Clin Invest. 1996;97(12):2705-2713. https://doi.org/10.1172/JCI118724.
View: Text | PDF
Research Article

The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle.

  • Text
  • PDF
Abstract

Defects of glucose transport and phosphorylation may underlie insulin resistance in obesity and non-insulin-dependent diabetes mellitus (NIDDM). To test this hypothesis, dynamic imaging of 18F-2-deoxy-glucose uptake into midthigh muscle was performed using positron emission tomography during basal and insulin-stimulated conditions (40 mU/m2 per min), in eight lean nondiabetic, eight obese nondiabetic, and eight obese subjects with NIDDM. In additional studies, vastus lateralis muscle was obtained by percutaneous biopsy during basal and insulin-stimulated conditions for assay of hexokinase and citrate synthase, and for immunohistochemical labeling of Glut 4. Quantitative confocal laser scanning microscopy was used to ascertain Glut 4 at the sarcolemma as an index of insulin-regulated translocation. In lean individuals, insulin stimulated a 10-fold increase of 2-deoxy-2[18F]fluoro-D-glucose (FDG) clearance into muscle and significant increases in the rate constants for inward transport and phosphorylation of FDG. In obese individuals, the rate constant for inward transport of glucose was not increased by insulin infusion and did not differ from values in NIDDM. Insulin stimulation of the rate constant for glucose phosphorylation was similar in obese and lean subjects but reduced in NIDDM. Insulin increased by nearly twofold the number and area of sites labeling for Glut 4 at the sarcolemma in lean volunteers, but in obese and NIDDM subjects translocation of Glut 4 was attenuated. Activities of skeletal muscle HK I and II were similar in lean, obese and NIDDM subjects. These in vivo and ex vivo assessments indicate that impaired glucose transport plays a key role in insulin resistance of NIDDM and obesity and that an additional impairment of glucose phosphorylation is evident in the insulin resistance of NIDDM.

Authors

D E Kelley, M A Mintun, S C Watkins, J A Simoneau, F Jadali, A Fredrickson, J Beattie, R Thériault

×

Full Text PDF

Download PDF (222.58 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts