Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis
Tomohiko Usui, … , Makoto Araie, George Seki
Tomohiko Usui, … , Makoto Araie, George Seki
Published July 1, 2001
Citation Information: J Clin Invest. 2001;108(1):107-115. https://doi.org/10.1172/JCI11869.
View: Text | PDF
Article

Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis

  • Text
  • PDF
Abstract

Proximal renal tubular acidosis associated with ocular abnormalities such as band keratopathy, glaucoma, and cataracts is caused by mutations in the Na+-HCO3– cotransporter (NBC-1). However, the mechanism by which NBC-1 inactivation leads to such ocular abnormalities remains to be elucidated. By immunological analysis of human and rat eyes, we demonstrate that both kidney type (kNBC-1) and pancreatic type (pNBC-1) transporters are present in the corneal endothelium, trabecular meshwork, ciliary epithelium, and lens epithelium. In the human lens epithelial (HLE) cells, RT-PCR detected mRNAs of both kNBC-1 and pNBC-1. Although a Na+-HCO3– cotransport activity has not been detected in mammalian lens epithelia, cell pH (pHi) measurements revealed the presence of Cl–-independent, electrogenic Na+-HCO3– cotransport activity in HLE cells. In addition, up to 80% of amiloride-insensitive pHi recovery from acid load in the presence of HCO3–/CO2 was inhibited by adenovirus-mediated transfer of a specific hammerhead ribozyme against NBC-1, consistent with a major role of NBC-1 in overall HCO3– transport by the lens epithelium. These results indicate that the normal transport activity of NBC-1 is indispensable not only for the maintenance of corneal and lenticular transparency but also for the regulation of aqueous humor outflow.

Authors

Tomohiko Usui, Masumi Hara, Hiroaki Satoh, Nobuo Moriyama, Humie Kagaya, Shiro Amano, Tetsuro Oshika, Yasuo Ishii, Nobuhiro Ibaraki, Chiaki Hara, Motoei Kunimi, Eisei Noiri, Kazuhisa Tsukamoto, Jun Inatomi, Hayato Kawakami, Hitoshi Endou, Takashi Igarashi, Astuo Goto, Toshiro Fujita, Makoto Araie, George Seki

×

Full Text PDF | Download (2.41 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts