Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia.
E Noiri, … , F Miller, M S Goligorsky
E Noiri, … , F Miller, M S Goligorsky
Published May 15, 1996
Citation Information: J Clin Invest. 1996;97(10):2377-2383. https://doi.org/10.1172/JCI118681.
View: Text | PDF
Research Article

In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia.

  • Text
  • PDF
Abstract

Gene products of all three distinct nitric oxide synthases are present in the mammalian kidney. This mosaic topography of nitric oxide synthase (NOS) isoforms probably reflects distinct functional role played by each enzyme. While nitric oxide (NO) is cytotoxic to isolated renal tubules, inhibition of NO production in vivo invariably results in the aggravation of renal dysfunction in various models of acute renal failure. We reasoned that the existing ambiguity on the role of nitric oxide in acute renal failure is in part due to the lack of selective NOS inhibitors. Phosphorothioated derivatives of antisense oligodeoxynucleotides targeting a conserved sequence within the open reading frame of the cDNA encoding the inducible NOS (iNOS) were designed to produce a selective knock-down of this enzyme. In vivo use of these antisense constructs attenuated acute renal failure in rats subjected to renal ischemia. This effect was due, at least in part, to the rescue of tubular epithelium from lethal injury. Application of antisense constructs did not affect endothelial NOS, as evidenced by a spared NO release after the infusion of bradykinin during in vivo monitoring with an NO-selective microelectrode. In conclusion, the data provide direct evidence for the cytotoxic effects of NO produced via iNOS in the course of ischemic acute renal failure, and offer a novel method to selectively prevent the induction of this enzyme.

Authors

E Noiri, T Peresleni, F Miller, M S Goligorsky

×

Full Text PDF

Download PDF (332.00 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts