Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118663

Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model.

S Neuenschwander, A Schwartz, T L Wood, C T Roberts Jr, L Hennighausen, and D LeRoith

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by Neuenschwander, S. in: PubMed | Google Scholar

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by Schwartz, A. in: PubMed | Google Scholar

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by Wood, T. in: PubMed | Google Scholar

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by Roberts, C. in: PubMed | Google Scholar

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by Hennighausen, L. in: PubMed | Google Scholar

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by LeRoith, D. in: PubMed | Google Scholar

Published May 15, 1996 - More info

Published in Volume 97, Issue 10 on May 15, 1996
J Clin Invest. 1996;97(10):2225–2232. https://doi.org/10.1172/JCI118663.
© 1996 The American Society for Clinical Investigation
Published May 15, 1996 - Version history
View PDF
Abstract

Development of the mammary gland during puberty, pregnancy, and lactation is controlled by steroid and peptide hormones and growth factors. To determine the role of the insulin-like growth factors (IGFs) in this process we developed a transgenic model using the whey acidic protein (WAP) gene to direct expression of rat IGF-I and human IGF binding protein-3 (IGFBP-3) to mammary tissue during late pregnancy and throughout lactation. High levels of expression of transgenic IGF-I and IGFBP-3 were seen in lobular-alveolar cells by in situ hybridization. There was no obvious effect on mammary development during pregnancy and lactation; indeed, mothers were capable of nursing their pups normally and the only structural difference seen in the mammary glands at peak lactation was an overall smaller size of the alveoli. We also evaluated the role of IGF-I and IGFBP-3 in the remodeling of mammary tissue during involution. Compared with control animals, the process of involution was modified in both transgenic lines. The degree of apoptotic cells was lower in the WAP-IGF-I and WAP-BP-3 expressing mice. In addition, there was a more quiescent pattern of involution with residual lobular secretary ability and a muted host inflammatory reaction with fewer lumenal microcalcifications. These results demonstrate that IGF-I and IGFBP-3 may modulate the involutionary process of the lactating mammary gland.

Version history
  • Version 1 (May 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts