Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model.
D M Shih, … , A M Fogelman, A J Lusis
D M Shih, … , A M Fogelman, A J Lusis
Published April 1, 1996
Citation Information: J Clin Invest. 1996;97(7):1630-1639. https://doi.org/10.1172/JCI118589.
View: Text | PDF
Research Article

Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model.

  • Text
  • PDF
Abstract

In an effort to identify genetic factors contributing to atherogenesis, we have studied inbred strains of mice that are susceptible (C57BL/6J) and resistant (C3H/HeJ) to diet-induced aortic fatty streak lesions. When maintained on a low-fat diet, HDL isolated from both strain C57BL/6J (B6) and C3H/HeJ (C3H) mice protect against LDL oxidation in a coculture model of the artery wall. However, when maintained on an atherogenic diet high in fat and cholesterol, the HDL isolated from B6 mice lose the capacity to protect, whereas HDL from C3H mice protect equally well. Associated with the loss in the ability of HDL to protect is a decrease in the activity of serum paraoxonase, a serum esterase carried on HDL that has previously been shown to protect against LDL oxidation in vitro. The levels of paraoxonase mRNA decreased in B6 mice upon challenge with the atherogenic diet but increased in C3H, indicating that paraoxonase production is under genetic control. In a set of recombinant inbred strains derived from the B6 and C3H parental strains, low paraoxonase mRNA levels segregated with aortic lesion development, supporting a role for paraoxonase in atherogenesis.

Authors

D M Shih, L Gu, S Hama, Y R Xia, M Navab, A M Fogelman, A J Lusis

×

Full Text PDF | Download (233.56 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts