Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice.
S Takahashi, … , T Kobayakawa, S Izui
S Takahashi, … , T Kobayakawa, S Izui
Published April 1, 1996
Citation Information: J Clin Invest. 1996;97(7):1597-1604. https://doi.org/10.1172/JCI118584.
View: Text | PDF
Research Article

Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice.

  • Text
  • PDF
Abstract

To investigate the respective roles of Th1 and Th2 cells in the pathogenesis of lupus-like autoimmune disease, we have analyzed the spontaneous and antigen-induced productions of IgG1 vs IgG2a and IgG3 subclasses in relation to the mRNA expression of INF-gamma (Th1 cytokine promoting IgG2a and IgG3 production), IL-4 (Th2 cytokine promoting IgG1 production), and IL-10 (Th2 cytokine) in CD4+ T cells from lupus-prone MRL mice. For this purpose, two paired sets of MRL mice were chosen for the comparison of these parameters: (a) MRL-lpr/lpr (lpr for lymphoproliferation) and its recently described substrain with a prolonged survival, termed MRL-lpr/lpr.ll (ll for long lived) and (b) MRL male mice bearing the Yaa (Y-linked autoimmune acceleration) gene (MRL.Yaa) with an accelerated disease and their male counterparts lacking the Yaa gene. We demonstrate herein that the accelerated development of lupus-like autoimmune disease in MRL-lpr/lpr and MRL.Yaa mice, as compared with MRL-lpr/lpr.ll and MRL-+/+ mice, respectively, was correlated with an enhanced expression of IFN-gamma vs IL-4 and IL-10 mRNA in CD4+ T cells, which paralleled with an increase of spontaneous and foreign T cell-dependent antigen-induced productions of IgG2a and IgG3 vs IgG1 antibodies. These data suggest that an imbalance towards Th1 predominance may play a significant role in the acceleration of lupus-like autoimmune disease in MRL mice.

Authors

S Takahashi, L Fossati, M Iwamoto, R Merino, R Motta, T Kobayakawa, S Izui

×

Full Text PDF | Download (341.37 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts