Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118548

NG-monomethyl-L-arginine inhibits the blood flow but not the insulin-like response of forearm muscle to IGF- I: possible role of nitric oxide in muscle protein synthesis.

D A Fryburg

Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville 22908, USA. daf2s@virginia.edu

Find articles by Fryburg, D. in: PubMed | Google Scholar

Published March 1, 1996 - More info

Published in Volume 97, Issue 5 on March 1, 1996
J Clin Invest. 1996;97(5):1319–1328. https://doi.org/10.1172/JCI118548.
© 1996 The American Society for Clinical Investigation
Published March 1, 1996 - Version history
View PDF
Abstract

In human skeletal muscle, insulin-like growth factor-I (IGF-I) exerts both growth hormone-like (increase in protein synthesis) and insulin-like (decrease in protein degradation and increase in glucose uptake) actions and augments forearm blood flow two- to threefold. This study was designed to address whether (a) the increase in blood flow due to IGF-I could be blocked by an inhibitor of nitric oxide synthase; and (b) the metabolic actions of IGF-I were altered by use of a nitric oxide synthase inhibitor. Forearm blood flow, glucose, lactate, oxygen, nitrite, and phenylalanine balances and phenylalanine kinetics were studied in a total of 17 healthy, adult volunteers after an overnight fast in two different protocols. In protocol 1, after basal samples IGF-I was infused alone for 4 h with samples repeated during the last 30 min. After the 4-h sample period, NG-monomethyl-L-arginine (L-NMMA) was infused into the brachial artery for 2 h to bring flow back to baseline and repeat samples were taken (6 h). In response to IGF-I alone, forearm blood flow rose from 3.8 +/- 1.0 (bas) to 7.9 +/- l.9 (4 h) ml/min/100 ml (P < 0.01) and was reduced back to baseline by L-NMMA at 6 h (P < 0.01). In protocol 1, IGF-I alone increased forearm nitrite release at 4 h (P < 0.03), which was reduced back to baseline by L-NMMA at 6 h (P < 0.05). Despite the reduction in flow with L-NMMA, IGF+L-NMMA yielded increases in glucose uptake (P < 0.005), lactate release (P < 0.04), oxygen uptake (P < 0.01), and a positive shift in phenylalanine balance (P < 0.01) due to both an increase in muscle protein synthesis (P < 0.02) and a decrease in protein degradation (P < 0.03). In protocol 2, L-NMMA was coinfused with IGF-I for 6 h, with the dose titrated to keep blood flow +/- 25% of baseline. Coinfusion of L-NMMA restrained blood flow to baseline and also yielded the same, significant metabolic effects, except that no significant increase in muscle protein synthesis was detected. These observations suggest: (a) that IGF-I increases blood flow through a nitric oxide-dependent mechanism; (b) that total blood flow does not affect the insulin-like response of muscle to IGF-I; and (c) that nitric oxide may be required for the protein synthetic (growth hormone-like) response of muscle to IGF-I.

Version history
  • Version 1 (March 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts