Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Induction of Fanconi anemia cellular phenotype in human 293 cells by overexpression of a mutant FAC allele.
H Youssoufian, … , M E Martin, M Buchwald
H Youssoufian, … , M E Martin, M Buchwald
Published February 15, 1996
Citation Information: J Clin Invest. 1996;97(4):957-962. https://doi.org/10.1172/JCI118519.
View: Text | PDF
Research Article

Induction of Fanconi anemia cellular phenotype in human 293 cells by overexpression of a mutant FAC allele.

  • Text
  • PDF
Abstract

The polypeptide encoded by the Fanconi anemia (FA) complementation group C gene, FAC, binds to a group of cytoplasmic proteins in vitro and may form a multimeric complex. A known mutant allele of FAC resulting from the substitution of Pro for Leu at codon 554 fails to correct the sensitivity of FA group C cells to mitomycin C. We reasoned that overexpression of the mutant protein in a wild-type cellular background might induce the FA phenotype by competing with endogenous FAC for binding to the accessory proteins. After stable transfection of 293 cells with wild-type and a mutant FAC allele containing the L554P substitution, four independent clones that expressed four-to-fifteen fold higher levels of transcript from the mutant transgene relative to the endogenous FAC gene showed hypersensitivity to mitomycin C. By contrast, both parental and FAC-overexpressing cells maintained their relative resistance to mitomycin C. No differences in the biosynthesis, subcellular localization and protein interactions of the normal and mutant proteins were detected. The induction of the FA phenotype in this system is compatible with the competition hypothesis and provides support for a functional role of the FAC-binding proteins in vivo.

Authors

H Youssoufian, Y Li, M E Martin, M Buchwald

×

Full Text PDF

Download PDF (259.75 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts