Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118515

The molecular basis of hereditary complement factor I deficiency.

T J Vyse, B J Morley, I Bartok, E L Theodoridis, K A Davies, A D Webster, and M J Walport

Department of Medicine, RPMS, Hammersmith Hospital, London, United Kingdom.

Find articles by Vyse, T. in: JCI | PubMed | Google Scholar

Department of Medicine, RPMS, Hammersmith Hospital, London, United Kingdom.

Find articles by Morley, B. in: JCI | PubMed | Google Scholar

Department of Medicine, RPMS, Hammersmith Hospital, London, United Kingdom.

Find articles by Bartok, I. in: JCI | PubMed | Google Scholar

Department of Medicine, RPMS, Hammersmith Hospital, London, United Kingdom.

Find articles by Theodoridis, E. in: JCI | PubMed | Google Scholar

Department of Medicine, RPMS, Hammersmith Hospital, London, United Kingdom.

Find articles by Davies, K. in: JCI | PubMed | Google Scholar

Department of Medicine, RPMS, Hammersmith Hospital, London, United Kingdom.

Find articles by Webster, A. in: JCI | PubMed | Google Scholar

Department of Medicine, RPMS, Hammersmith Hospital, London, United Kingdom.

Find articles by Walport, M. in: JCI | PubMed | Google Scholar

Published February 15, 1996 - More info

Published in Volume 97, Issue 4 on February 15, 1996
J Clin Invest. 1996;97(4):925–933. https://doi.org/10.1172/JCI118515.
© 1996 The American Society for Clinical Investigation
Published February 15, 1996 - Version history
View PDF
Abstract

The molecular basis of hereditary complement factor I deficiency is described in two pedigrees. In one pedigree, there were two factor I-deficient siblings, one of whom was asymptomatic and the other suffered from recurrent pyogenic infections. Their factor I mRNA was analyzed by reverse transcription of fibroblast RNA followed by amplification using the polymerase chain reaction. Both siblings were homozygous for the same transversion (adenine to thymine) at nucleotide 1282 in the cDNA. This mutation causes histidine-400 to be replaced by leucine. The altered histidine is a semi-conserved residue within the serine proteinase family, although no function has been ascribed to it. The proband of the second pedigree studied was found to be a compound heterozygote. One allele had the same mutation as the first family, the second allele had a donor splice site mutation that resulted in the deletion of the mRNA encoded in the fifth exon (a low-density lipoprotein receptor domain) from its transcript.

Version history
  • Version 1 (February 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts