Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118475

Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage.

P G Mitchell, H A Magna, L M Reeves, L L Lopresti-Morrow, S A Yocum, P J Rosner, K F Geoghegan, and J E Hambor

Central Research Division, Pfizer Inc., Groton, Connecticut 06340, USA.

Find articles by Mitchell, P. in: JCI | PubMed | Google Scholar

Central Research Division, Pfizer Inc., Groton, Connecticut 06340, USA.

Find articles by Magna, H. in: JCI | PubMed | Google Scholar

Central Research Division, Pfizer Inc., Groton, Connecticut 06340, USA.

Find articles by Reeves, L. in: JCI | PubMed | Google Scholar

Central Research Division, Pfizer Inc., Groton, Connecticut 06340, USA.

Find articles by Lopresti-Morrow, L. in: JCI | PubMed | Google Scholar

Central Research Division, Pfizer Inc., Groton, Connecticut 06340, USA.

Find articles by Yocum, S. in: JCI | PubMed | Google Scholar

Central Research Division, Pfizer Inc., Groton, Connecticut 06340, USA.

Find articles by Rosner, P. in: JCI | PubMed | Google Scholar

Central Research Division, Pfizer Inc., Groton, Connecticut 06340, USA.

Find articles by Geoghegan, K. in: JCI | PubMed | Google Scholar

Central Research Division, Pfizer Inc., Groton, Connecticut 06340, USA.

Find articles by Hambor, J. in: JCI | PubMed | Google Scholar

Published February 1, 1996 - More info

Published in Volume 97, Issue 3 on February 1, 1996
J Clin Invest. 1996;97(3):761–768. https://doi.org/10.1172/JCI118475.
© 1996 The American Society for Clinical Investigation
Published February 1, 1996 - Version history
View PDF
Abstract

Proteolysis of triple-helical collagen is an important step in the progression toward irreversible tissue damage in osteoarthritis. Earlier work on the expression of enzymes in cartilage suggested that collagenase-1 (MMP-1) contributes to the process. Degenerate reverse transcription polymerase chain reaction experiments, Northern blot analysis, and direct immunodetection have now provided evidence that collagenase-3 (MMP-13), an enzyme recently cloned from human breast carcinoma, is expressed by chondrocytes in human osteoarthritic cartilage. Variable levels of MMP-13 and MMP-1 in cartilage was significantly induced at both the message and protein levels by interleukin-1 alpha. Recombinant MMP-13 cleaved type II collagen to give characteristic 3/4 and 1/4 fragments; however, MMP-13 turned over type II collagen at least 10 times faster than MMP-1. Experiments with intact type II collagen as well as a synthetic peptide suggested that MMP-13 cleaved type II collagen at the same bond as MMP-1, but this was then followed by a secondary cleavage that removed three amino acids from the 1/4 fragment amino terminus. The expression of MMP-13 in osteoarthritic cartilage and its activity against type II collagen suggest that the enzyme plays a significant role in cartilage collagen degradation, and must consequently form part of a complex target for proposed therapeutic interventions based on collagenase inhibition.

Version history
  • Version 1 (February 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts