Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ammonia inhibits cAMP-regulated intestinal Cl- transport. Asymmetric effects of apical and basolateral exposure and implications for epithelial barrier function.
M Prasad, … , B J Hrnjez, J B Matthews
M Prasad, … , B J Hrnjez, J B Matthews
Published November 1, 1995
Citation Information: J Clin Invest. 1995;96(5):2142-2151. https://doi.org/10.1172/JCI118268.
View: Text | PDF
Research Article

Ammonia inhibits cAMP-regulated intestinal Cl- transport. Asymmetric effects of apical and basolateral exposure and implications for epithelial barrier function.

  • Text
  • PDF
Abstract

The colon, unlike most organs, is normally exposed to high concentrations of ammonia, a weak base which exerts profound and diverse biological effects on mammalian cells. The impact of ammonia on intestinal cell function is largely unknown despite its concentration of 4-70 mM in the colonic lumen. The human intestinal epithelial cell line T84 was used to model electrogenic Cl- secretion, the transport event which hydrates mucosal surfaces and accounts for secretory diarrhea. Transepithelial transport and isotopic flux analysis indicated that physiologically-relevant concentrations of ammonia (as NH4Cl) markedly inhibit cyclic nucleotide-regulated Cl- secretion but not the response to the Ca2+ agonist carbachol. Inhibition by ammonia was 25-fold more potent with basolateral compared to apical exposure. Ion substitution indicated that the effect of NH4Cl was not due to altered cation composition or membrane potential. The site of action of ammonia is distal to cAMP generation and is not due simply to cytoplasmic alkalization. The results support a novel role for ammonia as an inhibitory modulator of intestinal epithelial Cl- secretion. Secretory responsiveness may be dampened in pathological conditions associated with increased mucosal permeability due to enhanced access of lumenal ammonia to the basolateral epithelial compartment.

Authors

M Prasad, J A Smith, A Resnick, C S Awtrey, B J Hrnjez, J B Matthews

×

Full Text PDF

Download PDF (2.08 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts