Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118257

Sheep lung cytochrome P4501A1 (CYP1A1): cDNA cloning and transcriptional regulation by oxygen tension.

T A Hazinski, E Noisin, I Hamon, and A DeMatteo

Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2586, USA.

Find articles by Hazinski, T. in: PubMed | Google Scholar

Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2586, USA.

Find articles by Noisin, E. in: PubMed | Google Scholar

Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2586, USA.

Find articles by Hamon, I. in: PubMed | Google Scholar

Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2586, USA.

Find articles by DeMatteo, A. in: PubMed | Google Scholar

Published October 1, 1995 - More info

Published in Volume 96, Issue 4 on October 1, 1995
J Clin Invest. 1995;96(4):2083–2089. https://doi.org/10.1172/JCI118257.
© 1995 The American Society for Clinical Investigation
Published October 1, 1995 - Version history
View PDF
Abstract

Lung cytochrome P450 activity has been linked to neoplasia and may produce reactive oxidant species and potent arachidonic acid metabolites. In lamb lung, oxygen breathing increases lung P450 activity, and inhibition of lung cytochrome P450 activity reduces oxygen-induced lung injury. The P4501A1 (CYP1A1) isozyme is present in many lung cells, including endothelial cells, and may therefore be involved in the pathogenesis of hyperoxic injury to microvascular endothelium. Therefore, to test the hypothesis that oxygen regulates P4501A1 gene expression in the lung, we cloned the sheep P4501A1 cDNA, and examined its regulation by oxygen breathing significantly increased lung P4501A1 RNA levels and that this increase preceded the increase in isozyme activity. Oxygen exposure also promptly increased P4501A1 RNA levels in cultured lamb lung microvascular endothelial cells but not in endothelial cells isolated from the main pulmonary artery or in lung smooth muscle cells. The oxygen-stimulated increase in P4501A1 RNA levels was not serum dependent, was unaffected by cycloheximide treatment, and could not be mimicked by treatment of the cells with oxygenated medium, conditioned medium, or by chemical oxidants. By nuclear run-on assay in cultured lung endothelial cells, oxygen increased the transcription rate of P4501A1 by almost fourfold after 90 min of oxygen exposure but had no significant effect on P4501A1 RNA stability. We conclude that oxygen tension, but not chemical oxidants, increases P4501A1 gene expression pretranslationally in lung microvascular endothelial cells. We speculate that oxygen induction of P450 activity in these cells may contribute to microvascular injury during oxygen breathing.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2083
page 2083
icon of scanned page 2084
page 2084
icon of scanned page 2085
page 2085
icon of scanned page 2086
page 2086
icon of scanned page 2087
page 2087
icon of scanned page 2088
page 2088
icon of scanned page 2089
page 2089
Version history
  • Version 1 (October 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts