Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118116

FK506 augments activation-induced programmed cell death of T lymphocytes in vivo.

K Migita, K Eguchi, Y Kawabe, T Tsukada, A Mizokami, and S Nagataki

First Department of Internal Medicine, Nagasaki University School of Medicine, Japan.

Find articles by Migita, K. in: PubMed | Google Scholar

First Department of Internal Medicine, Nagasaki University School of Medicine, Japan.

Find articles by Eguchi, K. in: PubMed | Google Scholar

First Department of Internal Medicine, Nagasaki University School of Medicine, Japan.

Find articles by Kawabe, Y. in: PubMed | Google Scholar

First Department of Internal Medicine, Nagasaki University School of Medicine, Japan.

Find articles by Tsukada, T. in: PubMed | Google Scholar

First Department of Internal Medicine, Nagasaki University School of Medicine, Japan.

Find articles by Mizokami, A. in: PubMed | Google Scholar

First Department of Internal Medicine, Nagasaki University School of Medicine, Japan.

Find articles by Nagataki, S. in: PubMed | Google Scholar

Published August 1, 1995 - More info

Published in Volume 96, Issue 2 on August 1, 1995
J Clin Invest. 1995;96(2):727–732. https://doi.org/10.1172/JCI118116.
© 1995 The American Society for Clinical Investigation
Published August 1, 1995 - Version history
View PDF
Abstract

FK506 is an immunosuppressive drug that inhibits T cell receptor-mediated signal transduction. This drug can induce immunological tolerance in allograft recipients. In this study, we investigated the in vivo effects of FK506 on T cell receptor-mediated apoptosis induction. Injection of anti-CD3 antibody (Ab) in mice resulted in the elimination of CD4+ CD8+ thymocytes by DNA fragmentation. FK506 treatment significantly augmented thymic apoptosis induced by in vivo anti-CD3 Ab administration. Increased thymic apoptosis resulted in the disappearance of CD4+ CD8+ thymocytes after anti-CD3 Ab/FK506 treatment. DNA fragmentation triggered by FK506 was induced exclusively in antigen-stimulated T cells, since enhanced DNA fragmentation induced by in vivo staphylococcal enterotoxin B (SEB) injection was confirmed in SEB-reactive V beta 8+ thymocytes but not in SEB-nonreactive V beta 6+ thymocytes. In addition to thymocytes, mature peripheral T cells also die by activation-induced programmed cell death. A similar effect of FK506 on activation-induced programmed cell death was observed in SEB-activated peripheral spleen T cells. In contrast, cyclosporin A treatment did not enhance activation-induced programmed cell death of thymocytes and peripheral T cells. Apoptosis is required for the generation and maintenance of self-tolerance in the immune system. Our findings suggest that FK506-triggered apoptosis after elimination of antigen-activated T cells may represent a potential mechanism of the immunological tolerance achieved by FK506 treatment.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 727
page 727
icon of scanned page 728
page 728
icon of scanned page 729
page 729
icon of scanned page 730
page 730
icon of scanned page 731
page 731
icon of scanned page 732
page 732
Version history
  • Version 1 (August 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts