Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118105

Two receptor systems are involved in the plasma clearance of tissue-type plasminogen activator (t-PA) in vivo.

M Narita, G Bu, J Herz, and A L Schwartz

Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Find articles by Narita, M. in: PubMed | Google Scholar

Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Find articles by Bu, G. in: PubMed | Google Scholar

Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Find articles by Herz, J. in: PubMed | Google Scholar

Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Find articles by Schwartz, A. in: PubMed | Google Scholar

Published August 1, 1995 - More info

Published in Volume 96, Issue 2 on August 1, 1995
J Clin Invest. 1995;96(2):1164–1168. https://doi.org/10.1172/JCI118105.
© 1995 The American Society for Clinical Investigation
Published August 1, 1995 - Version history
View PDF
Abstract

Tissue-type plasminogen activator (t-PA) is a serine protease, catalyzing the initial step in the fibrinolytic process. Intravenously administered t-PA is rapidly cleared from the circulation by the liver. Two distinct clearance mechanisms, which are mediated by the low density lipoprotein receptor-related protein (LRP) on liver parenchymal cells and by the mannose receptor on liver endothelial cells, have been described. Using competitors and inhibitors of the receptors, we investigated the role of LRP and carbohydrate receptors in t-PA clearance in vivo. To inhibit LRP, the 39-kD protein, which is a potent inhibitor of LRP activity, was overexpressed in the liver of mice using an adenoviral gene transfer technique. Expression of the 39-kD protein resulted in a sustained plasma concentration and an increase in the plasma half-life of 125I-t-PA from less than 1 min to 4-5 min. Blockade of the mannose receptor by intravenous administration of ovalbumin also prolonged the plasma half-life of 125I-t-PA to 3-4 min. The same degree of inhibition of t-PA clearance was also observed after administration of an inhibitor of the fucose receptor, fucosyl-BSA. However, under the conditions established for the complete blockade of the mannose receptor, no additional inhibition of t-PA clearance was observed using fucosyl-BSA, suggesting little or no role for the fucose receptor in the clearance of t-PA. Furthermore, a dramatic increase of the plasma half-life of 125I-t-PA (>> 20 min) was observed in mice overexpressing 39-kD protein and administered ovalbumin +/- fucosyl-BSA. Our results clearly demonstrate that two independent receptor systems, LRP and the mannose receptor, are involved in the hepatic clearance of t-PA.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1164
page 1164
icon of scanned page 1165
page 1165
icon of scanned page 1166
page 1166
icon of scanned page 1167
page 1167
icon of scanned page 1168
page 1168
Version history
  • Version 1 (August 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts