Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The inhibitory activity of human interleukin-1 receptor antagonist is enhanced by type II interleukin-1 soluble receptor and hindered by type I interleukin-1 soluble receptor.
D Burger, … , J G Giri, J M Dayer
D Burger, … , J G Giri, J M Dayer
Published July 1, 1995
Citation Information: J Clin Invest. 1995;96(1):38-41. https://doi.org/10.1172/JCI118045.
View: Text | PDF
Research Article

The inhibitory activity of human interleukin-1 receptor antagonist is enhanced by type II interleukin-1 soluble receptor and hindered by type I interleukin-1 soluble receptor.

  • Text
  • PDF
Abstract

Interleukin-1 (IL-1) is a major proinflammatory cytokine produced by monocytes/macrophages. At the inflammatory site, IL-1 is a potent inducer of the production of prostaglandin E2 (PGE2) and metalloproteinases on fibroblast-like cells, thus triggering tissue damage. The biological activity of IL-1 is counterbalanced by two types of inhibitors: the IL-1 receptor antagonist (IL-1Ra) which competitively binds IL-1 receptor without inducing signal transduction; and IL-1 soluble receptors (IL-1sR) which bind IL-1 and diminish the free concentration of soluble cytokine, thus hampering its binding to the cell surface receptor. Since IL-1sR can also bind IL-1Ra, we studied the simultaneous effects of both inhibitors on the production of interstitial collagenase (C'ase) and PGE2 by human dermal fibroblasts and synovial cells stimulated by either IL-1 alpha or IL-1 beta. IL-1Ra inhibited fibroblast and synovial cell stimulation by approximately 90%, with the exception of C'ase production by synovial cells which was inhibited by approximately 55%. Type I IL-1sR (IL-1sRI) preferentially inhibited IL-1 alpha, whereas type II IL-1sR (IL-1sRII) mainly inhibited IL-1 beta. When IL-1Ra was used simultaneously with IL-1sRI, the final inhibition was lower than that of either of the inhibitors. The simultaneous presence of IL-1Ra and IL-1sRII abolished the IL-1-induced production of PGE2 and C'ase on both dermal fibroblasts and synovial cells, demonstrating that concurrently these two inhibitors are able to abolish most of the inflammatory response. To our knowledge, this is the first example of two types of inhibitors that abolish each other's effects, one of which acts at the receptor level and the other at the ligand level, thus leaving ligand activity unimpaired.

Authors

D Burger, R Chicheportiche, J G Giri, J M Dayer

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 265 22
PDF 45 17
Scanned page 149 3
Citation downloads 56 0
Totals 515 42
Total Views 557
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts