Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture.
J N Palmer, … , F D Fortuin, C S Long
J N Palmer, … , F D Fortuin, C S Long
Published June 1, 1995
Citation Information: J Clin Invest. 1995;95(6):2555-2564. https://doi.org/10.1172/JCI117956.
View: Text | PDF
Research Article

Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture.

  • Text
  • PDF
Abstract

Interleukin-1 (IL-1), initially called "endogenous pyrogen," is primarily known as a mediator of inflammation. However, it also plays many other diverse physiologic roles including the stimulation and inhibition of both primary cells in culture and the interstitial and parenchymal cells of a number of organs including the heart. In the heart, IL-1 expression has traditionally been reported in situations where there is immunologic myocardial injury such as occurs during transplant rejection and congestive heart failure. For this reason, all of the effects of IL-1 have been presumed to be deleterious. Using a cell culture model which allows both the muscle cells (myocytes) and nonmuscle cells (fibroblasts) to be evaluated separately, we have found that IL-1 induces both cardiac myocyte hypertrophy and reinitiates myocyte DNA synthesis. In stark contrast, IL-1 exerts a potent anti-proliferative effect on cardiac fibroblasts. To our knowledge this is the first report concerning the differential effects of IL-1 on myocardial cell growth in culture and, given the inducible expression of IL-1 by myocardial cells during stress, underscores the importance of investigating the complex nature of the intracardiac cell-cell interactions that occur in the heart.

Authors

J N Palmer, W E Hartogensis, M Patten, F D Fortuin, C S Long

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 355 52
PDF 59 33
Scanned page 372 5
Citation downloads 56 0
Totals 842 90
Total Views 932
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts