Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hypertonicity, but not hypothermia, elicits substance P release from rat C-fiber neurons in primary culture.
A Garland, … , S R White, J Solway
A Garland, … , S R White, J Solway
Published May 1, 1995
Citation Information: J Clin Invest. 1995;95(5):2359-2366. https://doi.org/10.1172/JCI117928.
View: Text | PDF
Research Article

Hypertonicity, but not hypothermia, elicits substance P release from rat C-fiber neurons in primary culture.

  • Text
  • PDF
Abstract

Isocapnic dry gas hyperventilation provokes hyperpnea-induced bronchoconstriction in guinea pigs by releasing tachykinins from airway sensory C-fiber neurons. It is unknown whether dry gas hyperpnea directly stimulates C-fibers to release tachykinins, or whether this physical stimulus initiates a mediator cascade that indirectly stimulates C-fiber tachykinin release. We tested the hypotheses that mucosal hypothermia and/or hyperosmolarity--physical consequences of airway heat and water loss imposed by dry gas hyperpnea--can directly stimulate C-fiber tachykinin release. Neurons isolated from neonatal rat dorsal root ganglia were maintained in primary culture for 1 wk. Cells were then exposed for 30 min at 37 degrees C to graded concentrations of NaCl, mannitol, sucrose, or glycerol (0-600 mOsm) added to isotonic medium, or to isotonic medium at 25 degrees C without or with 462 mOsm mannitol added. Fractional release of substance P (SP) was calculated from supernatant and intracellular SP contents following exposure. Hyperosmolar solutions containing excess NaCl, mannitol, or sucrose all increased fractional SP release equivalently, in an osmolarity-dependent fashion. In marked contrast, hypothermia had no effect on fractional SP release under isotonic or hypertonic conditions. Thus, hyperosmolarity, but not hypothermia, can directly stimulate tachykinin release from cultured rat sensory C-fibers. The lack of effect of glycerol, a solute which quickly crosses cell membranes, suggests that neuronal volume change represents the physical stimulus transduced by C-fibers during hyperosmolar exposure.

Authors

A Garland, J E Jordan, J Necheles, L E Alger, M M Scully, R J Miller, D W Ray, S R White, J Solway

×

Full Text PDF

Download PDF (2.17 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts