Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117914

Demonstration of an in vivo functional beta 3-adrenoceptor in man.

S Enocksson, M Shimizu, F Lönnqvist, J Nordenström, and P Arner

Department of Medicine, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden.

Find articles by Enocksson, S. in: JCI | PubMed | Google Scholar

Department of Medicine, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden.

Find articles by Shimizu, M. in: JCI | PubMed | Google Scholar

Department of Medicine, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden.

Find articles by Lönnqvist, F. in: JCI | PubMed | Google Scholar

Department of Medicine, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden.

Find articles by Nordenström, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden.

Find articles by Arner, P. in: JCI | PubMed | Google Scholar

Published May 1, 1995 - More info

Published in Volume 95, Issue 5 on May 1, 1995
J Clin Invest. 1995;95(5):2239–2245. https://doi.org/10.1172/JCI117914.
© 1995 The American Society for Clinical Investigation
Published May 1, 1995 - Version history
View PDF
Abstract

Although it is well established in several mammalian species that beta 3-adrenoceptors play a major role in regulating lipolysis and thermogenesis in adipose tissue, the functional existence and role of this receptor subtype in man has been controversial. We investigated whether the beta 3-adrenoceptor functionally co-exists with beta 1- and beta 2-adrenoceptors in vivo in human adipose tissue. Subcutaneous abdominal adipose tissue of healthy non-obese subjects was microdialyzed with equimolar concentrations of dobutamine (selective beta 1-adrenoceptor agonist), terbutaline (selective beta 2-adrenoceptor agonist), or CGP 12177 (selective beta 3-adrenoceptor agonist). All three agents caused a rapid, sustained, concentration-dependent and significant elevation of the glycerol level in the microdialysate (lipolysis index). However, only terbutaline stimulated the nutritive blood flow in adipose tissue, as measured by an ethanol escape technique. Dobutamine and CGP 12177 was equally effective in elevating the glycerol level (maximum effect 150% above baseline). Terbutaline was significantly more effective than the other two beta-agonists (maximum effect 200% above baseline). When adipose tissue was pretreated with the beta 1/beta 2-selective adrenoceptor blocker propranolol the glycerol increasing effect of dobutamine or terbutaline was inhibited by 80-85% but the glycerol response to CGP 12177 was not influenced. It is concluded that a functional beta 3-adrenoceptor is present in vivo in man. It co-exists with beta 1- and beta 2-adrenoceptors in adipose tissue and may therefore play a role in lipolysis regulation. It appears, however, that the beta 2-adrenoceptor is the most important beta-adrenoceptor subtype for the mobilization of lipids from abdominal subcutaneous adipose tissue because of its concomitant stimulatory effect on lipolysis and blood flow.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2239
page 2239
icon of scanned page 2240
page 2240
icon of scanned page 2241
page 2241
icon of scanned page 2242
page 2242
icon of scanned page 2243
page 2243
icon of scanned page 2244
page 2244
icon of scanned page 2245
page 2245
Version history
  • Version 1 (May 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts