Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117888

Growth hormone mRNA in mammary gland tumors of dogs and cats.

J A Mol, E van Garderen, P J Selman, J Wolfswinkel, A Rijinberk, and G R Rutteman

Department of Clinical Sciences of Companion Animals, Utrecht University, The Netherlands.

Find articles by Mol, J. in: JCI | PubMed | Google Scholar

Department of Clinical Sciences of Companion Animals, Utrecht University, The Netherlands.

Find articles by van Garderen, E. in: JCI | PubMed | Google Scholar

Department of Clinical Sciences of Companion Animals, Utrecht University, The Netherlands.

Find articles by Selman, P. in: JCI | PubMed | Google Scholar

Department of Clinical Sciences of Companion Animals, Utrecht University, The Netherlands.

Find articles by Wolfswinkel, J. in: JCI | PubMed | Google Scholar

Department of Clinical Sciences of Companion Animals, Utrecht University, The Netherlands.

Find articles by Rijinberk, A. in: JCI | PubMed | Google Scholar

Department of Clinical Sciences of Companion Animals, Utrecht University, The Netherlands.

Find articles by Rutteman, G. in: JCI | PubMed | Google Scholar

Published May 1, 1995 - More info

Published in Volume 95, Issue 5 on May 1, 1995
J Clin Invest. 1995;95(5):2028–2034. https://doi.org/10.1172/JCI117888.
© 1995 The American Society for Clinical Investigation
Published May 1, 1995 - Version history
View PDF
Abstract

We have shown recently that in the dog progestin administration results in mammary production of immunoreactive growth hormone (GH). At present we demonstrate the expression of the gene encoding GH in the mammary gland of dogs and cats using reverse-transcriptase PCR. GH mRNA was found in the great majority of normal mammary tissues as well as benign and malignant mammary tumors of the dog and was associated with the presence of immunoreactive GH in cryostat sections. The mammary PCR product proved to be identical to that of the pituitary. The highest expression levels were found after prolonged treatment with progestins. In carcinomas GH mRNA was also found in progesterone receptor-negative tissue samples, indicating that after malignant transformation GH gene expression may become progestin independent. GH mRNA was also present in mammary tissues of cats with progestin-induced fibroadenomatous changes. It is concluded that GH gene expression occurs in normal, hyperplastic, and neoplastic mammary tissue of the dog. The expression in normal tissue is stimulated by progestins and might mediate the progestin-stimulated development of canine mammary tumors. The demonstration of progestin-stimulated GH expression in mammary tissue of cats indicates that the phenomenon is more generalized among mammals.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2028
page 2028
icon of scanned page 2029
page 2029
icon of scanned page 2030
page 2030
icon of scanned page 2031
page 2031
icon of scanned page 2032
page 2032
icon of scanned page 2033
page 2033
icon of scanned page 2034
page 2034
Version history
  • Version 1 (May 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts