Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction.
T L Stevens, … , Y Matsuda, M M Redfield
T L Stevens, … , Y Matsuda, M M Redfield
Published March 1, 1995
Citation Information: J Clin Invest. 1995;95(3):1101-1108. https://doi.org/10.1172/JCI117757.
View: Text | PDF
Research Article

A functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction.

  • Text
  • PDF
Abstract

Asymptomatic or early left ventricular dysfunction in humans is characterized by increases in circulating atrial natriuretic peptide (ANP) without activation of the renin-angiotensin-aldosterone system (RAAS). We previously reported a canine model of early left ventricular dysfunction (ELVD) produced by rapid ventricular pacing and characterized by an identical neurohumoral profile and maintenance of the natriuretic response to volume expansion (VE). To test the hypothesis that elevated endogenous ANP suppresses the RAAS and maintains sodium excretion in ELVD, we assessed the effects of antagonism of ANP on cardiorenal and neurohumoral function in ELVD. Chronic ANP suppression was produced by bilateral atrial appendectomies before the production of ELVD by rapid ventricular pacing (ELVD-APPX, n = 5). This group was compared with a separate group with ELVD and intact atrial appendages (ELVD-INTACT, n = 8). ELVD-APPX was characterized by lower circulating ANP (50 +/- 11 vs. 158 +/- 37 pg/ml, P < 0.05), activation of plasma renin activity (PRA) (9.4 +/- 2.4 vs. 0.6 +/- 0.4 ng/ml per h, P < 0.05) and aldosterone (36.4 +/- 12.5 vs. 2.5 +/- 0.0 ng/dl, P < 0.05) when compared to ELVD-INTACT. In comparison to the ELVD-INTACT group, sodium excretion was decreased before and during VE in the ELVD-APPX group. Acute ANP antagonism was produced by administration of the particulate guanylate cyclase coupled natriuretic peptide receptor antagonist, HS-142-1, to seven conscious dogs with ELVD and intact atrial appendages (ELVD-INTACT). HS-142-1 decreased plasma concentrations and renal generation of the ANP second messenger, cGMP, and was associated with activation of PRA and sodium retention with enhanced tubular sodium reabsorption. These data support a significant role for elevated endogenous ANP in the maintenance of sodium excretion and regulation of the RAAS in experimental ELVD.

Authors

T L Stevens, J C Burnett Jr, M Kinoshita, Y Matsuda, M M Redfield

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 144 4
PDF 58 10
Scanned page 293 1
Citation downloads 57 0
Totals 552 15
Total Views 567
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts