Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117708

Sialoadhesin binds preferentially to cells of the granulocytic lineage.

P R Crocker, S Freeman, S Gordon, and S Kelm

Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, United Kingdom.

Find articles by Crocker, P. in: PubMed | Google Scholar

Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, United Kingdom.

Find articles by Freeman, S. in: PubMed | Google Scholar

Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, United Kingdom.

Find articles by Gordon, S. in: PubMed | Google Scholar

Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, United Kingdom.

Find articles by Kelm, S. in: PubMed | Google Scholar

Published February 1, 1995 - More info

Published in Volume 95, Issue 2 on February 1, 1995
J Clin Invest. 1995;95(2):635–643. https://doi.org/10.1172/JCI117708.
© 1995 The American Society for Clinical Investigation
Published February 1, 1995 - Version history
View PDF
Abstract

Sialoadhesin is a macrophage-restricted, sialic acid-dependent receptor of 185 kD that binds to the oligosaccharide sequence NeuAc alpha 2,3Gal on cell surface glycoconjugates. Recent cDNA cloning has shown that sialoadhesin is a new member of the immunoglobulin superfamily with sequence similarity to CD22, a sialic acid-dependent receptor of B lymphocytes. Sialoadhesin has been implicated in cellular interactions of stromal macrophages with developing myeloid cells. In this study, direct evidence for this interaction was obtained in cell-cell binding assays using both native and recombinant forms of the protein. In all assays, sialoadhesin exhibited specific, differential binding to various murine cell populations of hemopoietic origin. In rank order, sialoadhesin bound neutrophils > bone marrow cells = blood leukocytes > lymphocytes > thymocytes. Single-cell analyses confirmed that sialoadhesin selectively bound myeloid cells in complex cell mixtures obtained from the bone marrow and blood. In comparison, a recombinant Fc-chimeric form of murine CD22 showed high binding to B and T lymphocytes, but very low binding to immature and mature myeloid cells. These results are consistent with the notion that sialoadhesin in involved in interactions with granulocytes at different stages of their life histories.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 635
page 635
icon of scanned page 636
page 636
icon of scanned page 637
page 637
icon of scanned page 638
page 638
icon of scanned page 639
page 639
icon of scanned page 640
page 640
icon of scanned page 641
page 641
icon of scanned page 642
page 642
icon of scanned page 643
page 643
Version history
  • Version 1 (February 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts