Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117636

Intravenously injected insulin-like growth factor (IGF) I/IGF binding protein-3 complex exerts insulin-like effects in hypophysectomized, but not in normal rats.

J Zapf, C Hauri, E Futo, M Hussain, J Rutishauser, C A Maack, and E R Froesch

Department of Medicine, University Hospital, Zürich, Switzerland.

Find articles by Zapf, J. in: PubMed | Google Scholar

Department of Medicine, University Hospital, Zürich, Switzerland.

Find articles by Hauri, C. in: PubMed | Google Scholar

Department of Medicine, University Hospital, Zürich, Switzerland.

Find articles by Futo, E. in: PubMed | Google Scholar

Department of Medicine, University Hospital, Zürich, Switzerland.

Find articles by Hussain, M. in: PubMed | Google Scholar

Department of Medicine, University Hospital, Zürich, Switzerland.

Find articles by Rutishauser, J. in: PubMed | Google Scholar

Department of Medicine, University Hospital, Zürich, Switzerland.

Find articles by Maack, C. in: PubMed | Google Scholar

Department of Medicine, University Hospital, Zürich, Switzerland.

Find articles by Froesch, E. in: PubMed | Google Scholar

Published January 1, 1995 - More info

Published in Volume 95, Issue 1 on January 1, 1995
J Clin Invest. 1995;95(1):179–186. https://doi.org/10.1172/JCI117636.
© 1995 The American Society for Clinical Investigation
Published January 1, 1995 - Version history
View PDF
Abstract

Insulin-like growth factor (IGF) circulates in blood in two large molecular mass forms of 150 and 40 kD. Under normal conditions, most of the IGF is bound to the 150-kD complex by which it is retained in the circulation and therefore unable to exert acute insulin-like actions. The aim of this study was to answer the question whether or not IGF in the 40-kD complex is bioavailable to insulin target tissues and thus can cause acute insulin-like effects in vivo. Intravenously injected 1:1 molar recombinant human (rh) IGF I/rhIGF binding protein (BP)-3 complex lowered blood glucose and stimulated glycogen synthesis in diaphragm of hypophysectomized, but not of normal rats. The serum half-lives of the two components of the complex were similar to each other, but considerably shorter in hypox than in normal rats. On neutral gel filtration of serum both components of the injected complex appeared predominantly in the 150-kD region in normal rats. In hypox rats which lack the 150-kD complex they were found in the 40-kD region and disappeared rapidly from the circulation. We conclude that in the absence of the 150-kD complex, IGF associated with the 40-kD complex can rapidly leave the vascular compartment, reach insulin or type 1 IGF receptors and exert acute insulin-like effects.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 179
page 179
icon of scanned page 180
page 180
icon of scanned page 181
page 181
icon of scanned page 182
page 182
icon of scanned page 183
page 183
icon of scanned page 184
page 184
icon of scanned page 185
page 185
icon of scanned page 186
page 186
Version history
  • Version 1 (January 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts