Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis.
G Y Koh, … , M H Soonpaa, L J Field
G Y Koh, … , M H Soonpaa, L J Field
Published January 1, 1995
Citation Information: J Clin Invest. 1995;95(1):114-121. https://doi.org/10.1172/JCI117627.
View: Text | PDF
Research Article

Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis.

  • Text
  • PDF
Abstract

Intracardiac grafts comprised of genetically modified skeletal myoblasts were assessed for their ability to effect long-term delivery of recombinant transforming growth factor-beta (TGF-beta) to the heart. C2C12 myoblasts were stably transfected with a construct comprised of an inducible metallothionein promoter fused to a modified TGF-beta 1 cDNA. When cultured in medium supplemented with zinc sulfate, cells carrying this transgene constitutively secrete active TGF-beta 1. These genetically modified myoblasts were used to produce intracardiac grafts in syngeneic C3Heb/FeJ hosts. Viable grafts were observed as long as three months after implantation, and immunohistological analyses of mice maintained on water supplemented with zinc sulfate revealed the presence of grafted cells which stably expressed TGF-beta 1. Regions of apparent neovascularization, as evidenced by tritiated thymidine incorporation into vascular endothelial cells, were observed in the myocardium which bordered grafts expressing TGF-beta 1. The extent of vascular endothelial cell DNA synthesis could be modulated by altering dietary zinc. Similar effects on the vascular endothelial cells were not seen in mice with grafts comprised of nontransfected cells. This study indicates that genetically modified skeletal myoblast grafts can be used to effect the local, long-term delivery of recombinant molecules to the heart.

Authors

G Y Koh, S J Kim, M G Klug, K Park, M H Soonpaa, L J Field

×

Full Text PDF

Download PDF (2.65 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts