Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The morphogenic/cytotoxic and prostaglandin-stimulating activities of interleukin-1 beta in the rat ovary are nitric oxide independent.
I Ben-Shlomo, … , E Y Adashi, D W Payne
I Ben-Shlomo, … , E Y Adashi, D W Payne
Published October 1, 1994
Citation Information: J Clin Invest. 1994;94(4):1463-1469. https://doi.org/10.1172/JCI117484.
View: Text | PDF
Research Article

The morphogenic/cytotoxic and prostaglandin-stimulating activities of interleukin-1 beta in the rat ovary are nitric oxide independent.

  • Text
  • PDF
Abstract

Nitric oxide (NO) has been implicated as a mediator of physiologic and pathologic cellular injury. Since the cytokine interleukin-1 beta (IL-1 beta) induces nitric oxide synthase (NOS) activity as well as effects morphogenic/cytotoxic changes and increased prostaglandin (PGE2) levels in cultured whole ovarian dispersates, we set out to determine whether these actions are interrelated. Treatment with IL-1 beta resulted in a marked increase in media nitrite and nitrate accumulation, morphological alterations, and increased release of lactate dehydrogenase (LDH) into media. Addition of IL-1 receptor antagonist (RA) eliminated these IL-1 beta effects. In contrast, specific inhibitors of NOS failed to reverse IL-1 beta-induced morphogenic changes or LDH release in spite of complete reduction of media nitrite to control levels. Similarly, treatment with transforming growth factor beta 1, inhibited IL-1 beta-induced nitrite accumulation, but had no effect on the morphologic or cytotoxic endpoints. Moreover, the addition of sodium nitroprusside, an NO generator, resulted in progressive increments in media nitrite content without a corresponding increase in the IL-1 beta-associated morphogenic changes or media LDH content. Furthermore, IL-1-induced PGE2 accumulation remained unaffected by specific NOS inhibition. These observations support the view that NO does not mediate the morphogenic/cytotoxic or inflammatory-like (e.g., PGE2 inducing) properties of IL-1 beta in cultured whole ovarian dispersates. Although the precise role of NO in ovarian physiology remains unknown, it is possible that NO participates in the periovulatory modulation of ovarian blood flow by virtue of its potent vasodilatory activity.

Authors

I Ben-Shlomo, E Y Adashi, D W Payne

×

Full Text PDF

Download PDF (2.94 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts