A Xenopus oocyte expression system was used to examine how glucose transporters (GLUT 2 and GLUT 3) and glucokinase (GK) activity affect glucose utilization. Uninjected oocytes and low rates of both glucose transport and phosphorylation; expression of GLUT 2 or GLUT 3 increased glucose phosphorylation approximately 20-fold by a low Km, endogenous hexokinase at glucose concentrations < or = 1 mM, but not at higher glucose concentrations. Coexpression of functional GK isoforms with GLUT 2 or 3 increased glucose utilization approximately an additional two- to threefold primarily at the physiologic glucose concentrations of 5-20 mM. The Km for glucose of both the hepatic and beta cell isoforms of GK, determined in situ, was approximately 5-10 mM when coexpressed with either GLUT 2 or GLUT 3. The increase in glucose utilization by coexpression of GLUT 3 and GK was dependent upon glucose phosphorylation since two missense GK mutations linked with maturity-onset diabetes, 182: Val-->Met and 228:Thr-->Met, did not increase glucose utilization despite accumulation of both a similar amount of immunoreactive GK protein and glucose inside the cell. Coexpression of a mutant GK and a normal GK isoform did not interfere with the function of the normal GK enzyme. Since the coexpression of GK and a glucose transporter in oocytes resembles conditions in the hepatocyte and pancreatic beta cell, these results indicate that increases in glucose utilization at glucose concentrations > 1 mM depend upon both a functional glucose transporter and GK.
H Morita, Y Yano, K D Niswender, J M May, R R Whitesell, L Wu, R L Printz, D K Granner, M A Magnuson, A C Powers
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 131 | 2 |
74 | 13 | |
Scanned page | 375 | 2 |
Citation downloads | 56 | 0 |
Totals | 636 | 17 |
Total Views | 653 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.