Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117309

Alpha 1 adrenergic receptor-induced c-fos gene expression in rat aorta and cultured vascular smooth muscle cells.

M Okazaki, Z W Hu, M Fujinaga, and B B Hoffman

Department of Medicine, Stanford University School of Medicine, California.

Find articles by Okazaki, M. in: PubMed | Google Scholar

Department of Medicine, Stanford University School of Medicine, California.

Find articles by Hu, Z. in: PubMed | Google Scholar

Department of Medicine, Stanford University School of Medicine, California.

Find articles by Fujinaga, M. in: PubMed | Google Scholar

Department of Medicine, Stanford University School of Medicine, California.

Find articles by Hoffman, B. in: PubMed | Google Scholar

Published July 1, 1994 - More info

Published in Volume 94, Issue 1 on July 1, 1994
J Clin Invest. 1994;94(1):210–218. https://doi.org/10.1172/JCI117309.
© 1994 The American Society for Clinical Investigation
Published July 1, 1994 - Version history
View PDF
Abstract

While growth of blood vessels is important in hypertension, relatively little is known about the contribution of catecholamines. Using isolated rat aorta and cultured smooth muscle cells, we examined adrenergic stimulation of gene expression. Phenylephrine, a selective alpha 1 adrenergic receptor agonist, caused a rapid and transient increase in c-fos mRNA accumulation which was inhibited by prazosin, an alpha 1 receptor antagonist. Similarly, phenylephrine stimulated c-jun and c-myc mRNA accumulation. Chloroethyl-clonidine, a compound which irreversibly blocks alpha 1B receptors, completely blocked the phenylephrine-induced increase in c-fos mRNA. RNase protection experiments demonstrated that rat aorta prominently expressed mRNA for alpha 1B and alpha 1A/D receptors. Phenylephrine-induced c-fos mRNA was partially inhibited by H-7, a protein kinase C inhibitor, and by nifedipine, a Ca2+ channel blocker; these two compounds together had additive effects. In situ hybridization showed that expression of c-fos mRNA induced by phenylephrine was localized to aorta's medial layer. These results suggest that alpha 1 receptor-induced increase in c-fos mRNA in aorta is mediated by a chloroethyl-clonidine-sensitive receptor subtype signaling via increasing intracellular Ca2+ concentrations and activating protein kinase C.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 210
page 210
icon of scanned page 211
page 211
icon of scanned page 212
page 212
icon of scanned page 213
page 213
icon of scanned page 214
page 214
icon of scanned page 215
page 215
icon of scanned page 216
page 216
icon of scanned page 217
page 217
icon of scanned page 218
page 218
Version history
  • Version 1 (July 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts