Abstract

While growth of blood vessels is important in hypertension, relatively little is known about the contribution of catecholamines. Using isolated rat aorta and cultured smooth muscle cells, we examined adrenergic stimulation of gene expression. Phenylephrine, a selective alpha 1 adrenergic receptor agonist, caused a rapid and transient increase in c-fos mRNA accumulation which was inhibited by prazosin, an alpha 1 receptor antagonist. Similarly, phenylephrine stimulated c-jun and c-myc mRNA accumulation. Chloroethyl-clonidine, a compound which irreversibly blocks alpha 1B receptors, completely blocked the phenylephrine-induced increase in c-fos mRNA. RNase protection experiments demonstrated that rat aorta prominently expressed mRNA for alpha 1B and alpha 1A/D receptors. Phenylephrine-induced c-fos mRNA was partially inhibited by H-7, a protein kinase C inhibitor, and by nifedipine, a Ca2+ channel blocker; these two compounds together had additive effects. In situ hybridization showed that expression of c-fos mRNA induced by phenylephrine was localized to aorta's medial layer. These results suggest that alpha 1 receptor-induced increase in c-fos mRNA in aorta is mediated by a chloroethyl-clonidine-sensitive receptor subtype signaling via increasing intracellular Ca2+ concentrations and activating protein kinase C.

Authors

M Okazaki, Z W Hu, M Fujinaga, B B Hoffman

×

Other pages: