Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Negative feedback regulation of pulsatile growth hormone secretion by insulin-like growth factor I. Involvement of hypothalamic somatostatin.
M Bermann, … , R DeMott-Friberg, A L Barkan
M Bermann, … , R DeMott-Friberg, A L Barkan
Published July 1, 1994
Citation Information: J Clin Invest. 1994;94(1):138-145. https://doi.org/10.1172/JCI117299.
View: Text | PDF
Research Article

Negative feedback regulation of pulsatile growth hormone secretion by insulin-like growth factor I. Involvement of hypothalamic somatostatin.

  • Text
  • PDF
Abstract

To investigate the mechanisms of the negative feedback inhibition of growth hormone (GH) secretion by IGF-I, we studied parameters of GH pulsatility in six normal, fed men before and during a 48-h infusion of recombinant human IGF-I (rhIGF-I) (10-15 micrograms/kg per h). Plasma levels of IGF-I increased from the baseline value of 163.5 +/- 9.3 micrograms/liter (mean +/- SE) to a new steady state of 452.0 +/- 20.9 micrograms/liter during the infusion. Plasma GH concentrations were measured every 10 min for 24 h during both saline and rhIGF-I infusions using a sensitive chemiluminescent assay. Overall, GH concentrations were suppressed during the rhIGF-I infusion by 85 +/- 3%, mainly by attenuating spontaneous GH pulse amplitude (77 +/- 4% suppression). The apparent GH pulse frequency was attenuated from 7.8 +/- 0.9 to 4.7 +/- 0.6 pulses/24 h (P = 0.006). Administration of rhIGF suppressed GH responses to exogenous GH-releasing hormone by 82 +/- 3%, and thyroid-stimulating hormone responses to thyrotropin-releasing hormone were also suppressed by 44 +/- 9%. This constellation of hormonal effects is most compatible with the rhIGF-I-induced stimulation of hypothalamic somatostatin secretion.

Authors

M Bermann, C A Jaffe, W Tsai, R DeMott-Friberg, A L Barkan

×

Full Text PDF | Download (1.26 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts