Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Quantitative differences in biosynthesis and extracellular deposition of fibrillin in cultured fibroblasts distinguish five groups of Marfan syndrome patients and suggest distinct pathogenetic mechanisms.
T Aoyama, U Francke, H C Dietz, H Furthmayr
T Aoyama, U Francke, H C Dietz, H Furthmayr
View: Text | PDF
Research Article

Quantitative differences in biosynthesis and extracellular deposition of fibrillin in cultured fibroblasts distinguish five groups of Marfan syndrome patients and suggest distinct pathogenetic mechanisms.

  • Text
  • PDF
Abstract

Pulse-chase studies of [35S]cysteine-labeled fibrillin were performed on fibroblast strains from 55 patients with Marfan syndrome (MFS), including 13 with identified mutations in the fibrillin-1 gene and 10 controls. Quantitation of the soluble intracellular and insoluble extracellular fibrillin allowed discrimination of five groups. Groups I (n = 8) and II (n = 19) synthesize reduced amounts of normal-sized fibrillin, while synthesis is normal in groups III (n = 6), IV (n = 18), and V (n = 4). When extracellular fibrillin deposition is measured, groups I and III deposit between 35 and 70% of control values, groups II and IV < 35%, and group V > 70%. A deletion mutant with a low transcript level from the mutant allele and seven additional patients have the group I protein phenotype. Disease in these patients is caused by a reduction in microfibrils associated with either a null allele, an unstable transcript, or an altered fibrillin product synthesized in low amounts. In 68% of the MFS individuals (groups II and IV), a dominant negative effect is invoked as the main pathogenetic mechanism. Products made by the mutant allele in these fibroblasts are proposed to interfere with microfibril formation. Insertion, deletion, and exon skipping mutations, resulting in smaller fibrillin products, exhibit the group II phenotype. A truncated form of fibrillin of 60 kD was identified with specific fibrillin antibodies in one of the group II cell culture media. Seven of the nine known missense mutations, giving rise to abnormal, but normal-sized fibrillin molecules, are in group IV.

Authors

T Aoyama, U Francke, H C Dietz, H Furthmayr

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 312 35
PDF 81 16
Figure 0 1
Scanned page 209 4
Citation downloads 62 0
Totals 664 56
Total Views 720
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts