Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117281

Chronic nitric oxide inhibition in utero produces persistent pulmonary hypertension in newborn lambs.

J R Fineman, J Wong, F C Morin 3rd, L M Wild, and S J Soifer

Department of Pediatrics, University of California San Francisco 94143-0106.

Find articles by Fineman, J. in: PubMed | Google Scholar

Department of Pediatrics, University of California San Francisco 94143-0106.

Find articles by Wong, J. in: PubMed | Google Scholar

Department of Pediatrics, University of California San Francisco 94143-0106.

Find articles by Morin, F. in: PubMed | Google Scholar

Department of Pediatrics, University of California San Francisco 94143-0106.

Find articles by Wild, L. in: PubMed | Google Scholar

Department of Pediatrics, University of California San Francisco 94143-0106.

Find articles by Soifer, S. in: PubMed | Google Scholar

Published June 1, 1994 - More info

Published in Volume 93, Issue 6 on June 1, 1994
J Clin Invest. 1994;93(6):2675–2683. https://doi.org/10.1172/JCI117281.
© 1994 The American Society for Clinical Investigation
Published June 1, 1994 - Version history
View PDF
Abstract

Persistent pulmonary hypertension of the newborn (PPHN) is associated with chronic intrauterine events. Acute nitric oxide (NO) inhibition attenuates the normal increase in pulmonary blood flow at birth. We investigated whether chronic NO inhibition in utero causes persistent pulmonary hypertension. 11 fetal lambs received either a continuous infusion of N omega-nitro-L-arginine (an NO synthesis inhibitor) or 0.9% saline. Before infusion, acetylcholine (dependent upon endogenous NO production) and sodium nitroprusside (which releases its own NO) produced potent pulmonary vasodilation. After 10.5 +/- 1.5 d of infusion, acetylcholine did not produce pulmonary vasodilation in N omega-nitric-L-arginine-treated fetal lambs, but did in saline-treated fetal lambs; sodium nitroprusside produced pulmonary vasodilation in both groups. Immediately after birth, at 140 d of gestation, during the 3-h study period, mean pulmonary arterial pressure did not decrease in N omega-nitro-L-arginine-treated lambs; the increase in pulmonary blood flow and decrease in pulmonary vascular resistance were markedly attenuated compared to saline-treated lambs. These hemodynamic derangements were reversed by L-arginine. There were no anatomic abnormalities in the pulmonary circulation. Chronic NO inhibition in utero reproduces many of the physiologic derangements of PPHN. Intrauterine events which result in endothelial dysfunction and inhibition of NO may produce the physiologic derrangements of PPHN.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2675
page 2675
icon of scanned page 2676
page 2676
icon of scanned page 2677
page 2677
icon of scanned page 2678
page 2678
icon of scanned page 2679
page 2679
icon of scanned page 2680
page 2680
icon of scanned page 2681
page 2681
icon of scanned page 2682
page 2682
icon of scanned page 2683
page 2683
Version history
  • Version 1 (June 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts