Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Interleukin-6 attenuates agonist-mediated calcium mobilization in murine osteoblastic cells.
J Green, … , Z Sella, C R Kleeman
J Green, … , Z Sella, C R Kleeman
Published June 1, 1994
Citation Information: J Clin Invest. 1994;93(6):2340-2350. https://doi.org/10.1172/JCI117239.
View: Text | PDF
Research Article

Interleukin-6 attenuates agonist-mediated calcium mobilization in murine osteoblastic cells.

  • Text
  • PDF
Abstract

Interleukin-6 (IL-6) is a multifunctional cytokine which is made by osteoblasts and has diverse effects on bone metabolism. We studied the interaction of IL-6 with the Ca2+ and cAMP signaling systems in the osteoblastic cell line UMR-106 and in primary osteoblastic cultures derived from neonatal rat calvariae. IL-6 did not alter basal intracellular calcium concentration ([Ca2+]i) but inhibited Ca2+ transients induced by parathyroid hormone (PTH), prostaglandin E2 (PGE2), and endothelin-1 in both dose- (100-400 U/ml) and time- (4-48 h) dependent manners. The effect of the cytokine was abolished by the tyrosine kinase inhibitor, herbimycin A (50 ng/ml). The IL-6 effect on the Ca2+ message system was related to suppressed production of hormonally induced inositol 1,4,5-triphosphate and inhibition of Ca2+ release from intracellular stores. Hormonally induced calcium entry pathways (estimated by using Mn2+ as a surrogate for Ca2+) were not, however, altered by the cytokine. IL-6 did not modulate cAMP generation in osteoblasts. With respect to osteoblast function, IL-6, although having no effect on cell proliferation by itself, greatly enhanced the antiproliferative effect of PGE2 and PTH. Because the production of IL-6 in osteoblasts is stimulated by calciotropic hormones (e.g., PTH and PGE2), the suppressive effect of the cytokine on hormonally induced Ca2+ transients may serve as an autocrine/paracrine mechanism for modulating the effect of hormones on bone metabolism.

Authors

J Green, S Schotland, Z Sella, C R Kleeman

×

Full Text PDF

Download PDF (2.01 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts