Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117180

Preferential activation of microsomal diacylglycerol/protein kinase C signaling during glucose treatment (De Novo phospholipid synthesis) of rat adipocytes.

R V Farese, M L Standaert, T P Arnold, K Yamada, K Musunuru, H Hernandez, H Mischak, and D R Cooper

James A. Haley Veterans' Hospital, Department of Internal Medicine, University of South Florida, Tampa 33612.

Find articles by Farese, R. in: PubMed | Google Scholar

James A. Haley Veterans' Hospital, Department of Internal Medicine, University of South Florida, Tampa 33612.

Find articles by Standaert, M. in: PubMed | Google Scholar

James A. Haley Veterans' Hospital, Department of Internal Medicine, University of South Florida, Tampa 33612.

Find articles by Arnold, T. in: PubMed | Google Scholar

James A. Haley Veterans' Hospital, Department of Internal Medicine, University of South Florida, Tampa 33612.

Find articles by Yamada, K. in: PubMed | Google Scholar

James A. Haley Veterans' Hospital, Department of Internal Medicine, University of South Florida, Tampa 33612.

Find articles by Musunuru, K. in: PubMed | Google Scholar

James A. Haley Veterans' Hospital, Department of Internal Medicine, University of South Florida, Tampa 33612.

Find articles by Hernandez, H. in: PubMed | Google Scholar

James A. Haley Veterans' Hospital, Department of Internal Medicine, University of South Florida, Tampa 33612.

Find articles by Mischak, H. in: PubMed | Google Scholar

James A. Haley Veterans' Hospital, Department of Internal Medicine, University of South Florida, Tampa 33612.

Find articles by Cooper, D. in: PubMed | Google Scholar

Published May 1, 1994 - More info

Published in Volume 93, Issue 5 on May 1, 1994
J Clin Invest. 1994;93(5):1894–1899. https://doi.org/10.1172/JCI117180.
© 1994 The American Society for Clinical Investigation
Published May 1, 1994 - Version history
View PDF
Abstract

Glucose has been reported to increase the de novo synthesis of diacylglycerol (DAG) and translocate and activate protein kinase C (PKC) in rat adipocytes. Presently, we examined the major subcellular site of PKC translocation/activation in response to glucose-induced DAG. Glucose rapidly increased DAG content and PKC enzyme activity in microsomes, but not in plasma membranes or other membranes, during a 30-min treatment of rat adipocytes. This glucose-induced increase in microsomal DAG was attended by increases in immunoreactive PKC alpha, beta, and epsilon. Glucose-induced activation of DAG/PKC signaling in microsomes was not associated with a change in the translocation of Glut-4 transporters from microsomes to the plasma membrane, a biological response that is known to be stimulated by agonists, e.g., phorbol esters, which increase DAG/PKC signaling in plasma membranes, as well as in microsomes. In conclusion, an increase in de novo phospholipid synthesis, as occurs during glucose treatment of rat adipocytes, primarily activates DAG/PKC signaling in microsomes; moreover, this signaling response and biological consequences thereof may differ from those of agonists that primarily stimulate DAG/PKC signaling in the plasma membrane.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1894
page 1894
icon of scanned page 1895
page 1895
icon of scanned page 1896
page 1896
icon of scanned page 1897
page 1897
icon of scanned page 1898
page 1898
icon of scanned page 1899
page 1899
Version history
  • Version 1 (May 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts