Abstract

Glucose has been reported to increase the de novo synthesis of diacylglycerol (DAG) and translocate and activate protein kinase C (PKC) in rat adipocytes. Presently, we examined the major subcellular site of PKC translocation/activation in response to glucose-induced DAG. Glucose rapidly increased DAG content and PKC enzyme activity in microsomes, but not in plasma membranes or other membranes, during a 30-min treatment of rat adipocytes. This glucose-induced increase in microsomal DAG was attended by increases in immunoreactive PKC alpha, beta, and epsilon. Glucose-induced activation of DAG/PKC signaling in microsomes was not associated with a change in the translocation of Glut-4 transporters from microsomes to the plasma membrane, a biological response that is known to be stimulated by agonists, e.g., phorbol esters, which increase DAG/PKC signaling in plasma membranes, as well as in microsomes. In conclusion, an increase in de novo phospholipid synthesis, as occurs during glucose treatment of rat adipocytes, primarily activates DAG/PKC signaling in microsomes; moreover, this signaling response and biological consequences thereof may differ from those of agonists that primarily stimulate DAG/PKC signaling in the plasma membrane.

Authors

R V Farese, M L Standaert, T P Arnold, K Yamada, K Musunuru, H Hernandez, H Mischak, D R Cooper

×

Other pages: