Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Specific tolerance to an acetylcholine receptor epitope induced in vitro in myasthenia gravis CD4+ lymphocytes by soluble major histocompatibility complex class II-peptide complexes.
M W Nicolle, … , D J Ferguson, J Newsom-Davis
M W Nicolle, … , D J Ferguson, J Newsom-Davis
Published April 1, 1994
Citation Information: J Clin Invest. 1994;93(4):1361-1369. https://doi.org/10.1172/JCI117112.
View: Text | PDF
Research Article

Specific tolerance to an acetylcholine receptor epitope induced in vitro in myasthenia gravis CD4+ lymphocytes by soluble major histocompatibility complex class II-peptide complexes.

  • Text
  • PDF
Abstract

In autoimmune disorders, inactivation of pathogenic antigen-specific T cells, rather than global immunosuppression, would be highly desirable. One way to achieve this would be to deliver the first antigen-specific signal to the T cell in the absence of the second costimulatory signal. Myasthenia gravis (MG) is a well-characterized autoimmune disease in which T cell-dependent autoantibodies are directed against the acetylcholine receptor (A ChR) at the neuromuscular junction. AChR-specific T cells have been cloned from MG patients, and in this study, we have induced long-lasting tolerance in vitro in one particular clone (PM-A1) with a known peptide epitope (alpha 144-163) and MHC class II restriction (DR4 Dw14.2 or 4.2) by using soluble MHC-class II peptide complexes. Preincubation of PM-A1 T cells with such complexes induced death by apoptosis in < or = 40-50% of the AChR-specific cells. Surviving cells remained refractory to stimulation with AChR-derived synthetic peptides or recombinant polypeptides for < or = 38 d after complex treatment. These effects were highly specific, dose-dependent and required > 2 h preincubation. The T cells could be protected from the tolerizing effects of complex by coincubation with DR-matched or -mismatched antigen-presenting cells. This work shows that antigen-specific T cells can be selectively killed or anergized using soluble MHC class II: peptide complexes. Such an antigen-specific therapy offers a rational approach to the immunotherapy of autoimmune or allergic disease in vivo.

Authors

M W Nicolle, B Nag, S D Sharma, N Willcox, A Vincent, D J Ferguson, J Newsom-Davis

×

Full Text PDF

Download PDF (2.23 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts