Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117101

Ca2+ transient decline and myocardial relaxation are slowed during low flow ischemia in rat hearts.

S A Camacho, R Brandes, V M Figueredo, and M W Weiner

Department of Medicine (Cardiology), San Francisco General Hospital, California 94110.

Find articles by Camacho, S. in: PubMed | Google Scholar

Department of Medicine (Cardiology), San Francisco General Hospital, California 94110.

Find articles by Brandes, R. in: PubMed | Google Scholar

Department of Medicine (Cardiology), San Francisco General Hospital, California 94110.

Find articles by Figueredo, V. in: PubMed | Google Scholar

Department of Medicine (Cardiology), San Francisco General Hospital, California 94110.

Find articles by Weiner, M. in: PubMed | Google Scholar

Published March 1, 1994 - More info

Published in Volume 93, Issue 3 on March 1, 1994
J Clin Invest. 1994;93(3):951–957. https://doi.org/10.1172/JCI117101.
© 1994 The American Society for Clinical Investigation
Published March 1, 1994 - Version history
View PDF
Abstract

The mechanisms that impair myocardial relaxation during ischemia are believed to involve abnormalities of calcium handling. However, there is little direct evidence to support this hypothesis. Therefore, we sought to determine whether the time constant of cytosolic calcium ([Ca2+]c) decline (tau Ca) was increased during low flow ischemia, and if there was a relationship between the time constant of left ventricular pressure decline (tau P) and tau Ca. Isolated perfused hearts were studied using indo-1 fluorescence ratio as an index of [Ca2+]c.tau P was used as an index of myocardial relaxation. The time constant of decline of the indo-1 ratio increased from 74 +/- 5 ms to 95 +/- 4, 144 +/- 10, and to 204 +/- 16 ms when coronary flow was reduced was reduced to 50, 20, and 10% of control, respectively. Indo-1 transients were calibrated to calculate tau Ca. tau Ca increased from 67 +/- 6 ms to 108 +/- 9 and 158 +/- 19 ms when coronary flow was reduced to 20 and 10% of control, respectively. There was a linear relationship between tau Ca and tau P (r = 0.82). These data support the hypothesis that during low flow ischemia, impaired myocardial relaxation may be caused by slowing of [Ca2+]c decline.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 951
page 951
icon of scanned page 952
page 952
icon of scanned page 953
page 953
icon of scanned page 954
page 954
icon of scanned page 955
page 955
icon of scanned page 956
page 956
icon of scanned page 957
page 957
Version history
  • Version 1 (March 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts