Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117087

Defective fluid transport by cystic fibrosis airway epithelia.

J J Smith, P H Karp, and M J Welsh

Department of Pediatrics, University of Iowa College of Medicine, Iowa City 52242.

Find articles by Smith, J. in: JCI | PubMed | Google Scholar

Department of Pediatrics, University of Iowa College of Medicine, Iowa City 52242.

Find articles by Karp, P. in: JCI | PubMed | Google Scholar

Department of Pediatrics, University of Iowa College of Medicine, Iowa City 52242.

Find articles by Welsh, M. in: JCI | PubMed | Google Scholar

Published March 1, 1994 - More info

Published in Volume 93, Issue 3 on March 1, 1994
J Clin Invest. 1994;93(3):1307–1311. https://doi.org/10.1172/JCI117087.
© 1994 The American Society for Clinical Investigation
Published March 1, 1994 - Version history
View PDF
Abstract

Cystic fibrosis (CF) airway epithelia exhibit defective transepithelial electrolyte transport: cAMP-stimulated Cl- secretion is abolished because of the loss of apical membrane cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels, and amiloride-sensitive Na+ absorption is increased two- to threefold because of increased amiloride-sensitive apical Na+ permeability. These abnormalities are thought to alter respiratory tract fluid, thereby contributing to airway disease, the major source of mortality in this genetic disease. However, the underlying hypothesis, that fluid transport is abnormal in CF airway epithelia, has not been tested. Most conjecture about fluid transport is based on measurements of Na+ and Cl- transport performed under short circuit conditions in Ussing chambers. But such studies differ from in vivo conditions in that transepithelial voltage and mucosal fluid composition are held constant. Therefore, we measured fluid transport and mucosal electrolyte composition in primary cultures of CF airway epithelia without holding transepithelial voltage and ion concentration gradients at zero. In normal epithelia, cAMP agonists plus amiloride stimulated NaCl and fluid secretion. In CF epithelia, cAMP agonists failed to stimulate fluid or electrolyte secretion, changes consistent with the loss of CFTR Cl- channels. But in striking contrast to predictions based on Ussing chamber studies, CF epithelia absorbed fluid at a rate no greater than normal epithelia. Moreover, amiloride, which inhibits Na+ channels, failed to inhibit fluid absorption by CF epithelia. These results have important implications for understanding the pathogenesis of CF airway disease and for the design and evaluation of therapy.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1307
page 1307
icon of scanned page 1308
page 1308
icon of scanned page 1309
page 1309
icon of scanned page 1310
page 1310
icon of scanned page 1311
page 1311
Version history
  • Version 1 (March 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts