Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117082

Sodium/calcium exchange modulates intracellular calcium overload during posthypoxic reoxygenation in mammalian working myocardium. Evidence from aequorin-loaded ferret ventricular muscles.

Y Kihara, S Sasayama, M Inoko, and J P Morgan

Second Department of Internal Medicine, Toyama Medical and Pharmaceutical University, School of Medicine, Japan.

Find articles by Kihara, Y. in: PubMed | Google Scholar

Second Department of Internal Medicine, Toyama Medical and Pharmaceutical University, School of Medicine, Japan.

Find articles by Sasayama, S. in: PubMed | Google Scholar

Second Department of Internal Medicine, Toyama Medical and Pharmaceutical University, School of Medicine, Japan.

Find articles by Inoko, M. in: PubMed | Google Scholar

Second Department of Internal Medicine, Toyama Medical and Pharmaceutical University, School of Medicine, Japan.

Find articles by Morgan, J. in: PubMed | Google Scholar

Published March 1, 1994 - More info

Published in Volume 93, Issue 3 on March 1, 1994
J Clin Invest. 1994;93(3):1275–1284. https://doi.org/10.1172/JCI117082.
© 1994 The American Society for Clinical Investigation
Published March 1, 1994 - Version history
View PDF
Abstract

We tested the hypothesis that the intracellular Ca2+ overload of ventricular myocardium during the period of posthypoxic reoxygenation is mediated by transsarcolemmal Ca2+ influx via Na+/Ca2+ exchange. In aequorin-loaded, ferret right ventricular papillary muscles, blockers of the sarcolemmal and the sarcoplasmic reticulum Ca2+ channels, slowed the Cai2+ transient, producing a convex ascent during membrane depolarization, followed by a concave descent during repolarization. The magnitude of the Cai2+ transient was affected by changes in the membrane potential, Nai+, Nao+, and Cao2+, and was blocked by Ni2+, or dichlorbenzamil. The calculated Na+/Ca2+ exchange current was in the reverse mode (Ca2+ influx) during the ascending phase of the Cai2+ transient, and was abruptly switched to the forward mode (Ca2+ efflux) at repolarization, matching the time course of the Cai2+ transient. During hypoxic superfusion, the Cai2+ transient was abbreviated, which was associated with a shorter action potential duration. In contrast, immediately after reoxygenation, the Cai2+ transient increased to a level greater than that of the control, even though the action potential remained abbreviated. This is the first demonstration on a beat-to-beat basis that, during reoxygenation, Ca2+ influx via Na+/Ca2+ exchange is augmented and transports a significant amount of Ca2+ into the ventricular myocardial cell. The activation of the exchanger at the time of reoxygenation appears to be mediated by Nai+ accumulation, which occurs during hypoxia.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1275
page 1275
icon of scanned page 1276
page 1276
icon of scanned page 1277
page 1277
icon of scanned page 1278
page 1278
icon of scanned page 1279
page 1279
icon of scanned page 1280
page 1280
icon of scanned page 1281
page 1281
icon of scanned page 1282
page 1282
icon of scanned page 1283
page 1283
icon of scanned page 1284
page 1284
Version history
  • Version 1 (March 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts