Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Leukotriene A4 hydrolase in human bronchoalveolar lavage fluid.
D A Munafo, … , J R Baker, T D Bigby
D A Munafo, … , J R Baker, T D Bigby
Published March 1, 1994
Citation Information: J Clin Invest. 1994;93(3):1042-1050. https://doi.org/10.1172/JCI117053.
View: Text | PDF
Research Article

Leukotriene A4 hydrolase in human bronchoalveolar lavage fluid.

  • Text
  • PDF
Abstract

We examined cell-free human bronchoalveolar lavage fluid (BALF) for enzymes of the 5-lipoxygenase pathway. BALF was obtained from six patients who were active smokers and six nonsmokers. Enzymatic activity in cell-free BALF was assessed by specific assays for leukotriene (LT) A4 hydrolase, 5-lipoxygenase, and LTC4 synthase using HPLC. Only LTA4 hydrolase enzymatic activity was found. This activity ranged from 101 to 667 when expressed as picomoles of LTB4 produced per milliliter BALF. Enzymatic activity in smokers vs nonsmokers was 484 +/- 120 vs 129 +/- 32 pmol LTB4/ml BALF (mean +/- SD, P < 0.0001). There were no leukotrienes found in BALF before assay. Immunoblot analysis revealed an immunoreactive band at a relative molecular mass of 69,000 D in all samples, consistent with LTA4 hydrolase, but no evidence of 5-lipoxygenase. BALF had greater LTA4 hydrolase activity per milligram of protein than neutrophil cytosol, epithelial cell cytosol, plasma, or serum. The synthesis of LTB4 was significantly increased when neutrophils were stimulated in BALF. These data indicate the selective presence of LTA4 hydrolase in BALF which is significantly increased in smokers. This enzyme in BALF may contribute to the inflammatory response in tobacco-related lung disease.

Authors

D A Munafo, K Shindo, J R Baker, T D Bigby

×

Full Text PDF | Download (1.83 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts