Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116954

Novel Pseudomonas product stimulates interleukin-8 production in airway epithelial cells in vitro.

P P Massion, H Inoue, J Richman-Eisenstat, D Grunberger, P G Jorens, B Housset, J F Pittet, J P Wiener-Kronish, and J A Nadel

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Massion, P. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Inoue, H. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Richman-Eisenstat, J. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Grunberger, D. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Jorens, P. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Housset, B. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Pittet, J. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Wiener-Kronish, J. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Nadel, J. in: PubMed | Google Scholar

Published January 1, 1994 - More info

Published in Volume 93, Issue 1 on January 1, 1994
J Clin Invest. 1994;93(1):26–32. https://doi.org/10.1172/JCI116954.
© 1994 The American Society for Clinical Investigation
Published January 1, 1994 - Version history
View PDF
Abstract

Because high concentrations of IL-8 are found in the sputum of cystic fibrosis patients, we hypothesized that Pseudomonas aeruginosa (PA) induces the production of IL-8 in airway epithelial cells and in monocytes. Therefore, we incubated the supernatant from PA culture with human transformed bronchial epithelial cells (16-HBE) or with monocytes. The culture medium of 16-HBE cells that had been incubated with PA supernatant for 6 h had chemotactic activity that was inhibited by an antibody to human IL-8. The PA supernatant induced IL-8 production by primary bronchial epithelial cells, by 16-HBE cells, and by monocytes. After incubation with PA supernatant, 16-HBE cells showed a marked increase in the levels of IL-8 gene expression. The PA product responsible for IL-8 production resisted freezing, boiling, and proteolysis. This product was not lipid extractable and was present in a 1-kD filtrate. We conclude that a small molecular mass product of PA stimulates IL-8 production by 16-HBE cells and by monocytes, and that the chemotactic activity produced by 16-HBE cells after exposure to PA is due principally to IL-8.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 26
page 26
icon of scanned page 27
page 27
icon of scanned page 28
page 28
icon of scanned page 29
page 29
icon of scanned page 30
page 30
icon of scanned page 31
page 31
icon of scanned page 32
page 32
Version history
  • Version 1 (January 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts