Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116942

Glanzmann thrombasthenia secondary to a Gly273-->Asp mutation adjacent to the first calcium-binding domain of platelet glycoprotein IIb.

M Poncz, S Rifat, B S Coller, P J Newman, S J Shattil, T Parrella, P Fortina, and J S Bennett

Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104.

Find articles by Poncz, M. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104.

Find articles by Rifat, S. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104.

Find articles by Coller, B. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104.

Find articles by Newman, P. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104.

Find articles by Shattil, S. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104.

Find articles by Parrella, T. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104.

Find articles by Fortina, P. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104.

Find articles by Bennett, J. in: PubMed | Google Scholar

Published January 1, 1994 - More info

Published in Volume 93, Issue 1 on January 1, 1994
J Clin Invest. 1994;93(1):172–179. https://doi.org/10.1172/JCI116942.
© 1994 The American Society for Clinical Investigation
Published January 1, 1994 - Version history
View PDF
Abstract

We studied the defect responsible for Glanzmann thrombasthenia in a patient whose platelets expressed < 5% of the normal amount of GPIIb-IIIa. Genetic and biochemical evidence indicated that the patient's GPIIIa genes were normal. However, DNA analysis revealed the patient homozygous for a G818-->A substitution in her GPIIb genes, resulting in a Gly273-->Asp substitution adjacent to the first GPIIb calcium-binding domain. To determine how this mutation impaired GPIIb-IIIa expression, recombinant GPIIb containing the mutation was coexpressed with GPIIIa in COS-1 cells. The GPIIb mutant formed stable GPIIb-IIIa heterodimers that were not immunoprecipitated by either of two heterodimer-specific monoclonal antibodies, indicating that the mutation disrupted the epitopes for these antibodies. Moreover, the GPIIb in the heterodimers was not cleaved into heavy and light chains, indicating that the heterodimers were not transported from the endoplasmic reticulum to the Golgi complex where GPIIb cleavage occurs, nor were the mutant heterodimers expressed on the cell surface. These studies demonstrate that a Gly273-->Asp mutation in GPIIb does not prevent the assembly of GPIIb-IIIa heterodimers, but alters the conformation of these heterodimers sufficiently to impair their intracellular transport. The impaired GPIIb-IIIa transport is responsible for the thrombasthenia in this patient.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 172
page 172
icon of scanned page 173
page 173
icon of scanned page 174
page 174
icon of scanned page 175
page 175
icon of scanned page 176
page 176
icon of scanned page 177
page 177
icon of scanned page 178
page 178
icon of scanned page 179
page 179
Version history
  • Version 1 (January 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts