Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Limb congestion and sympathoexcitation during exercise. Implications for congestive heart failure.
J McClain, … , M Smith, L Sinoway
J McClain, … , M Smith, L Sinoway
Published November 1, 1993
Citation Information: J Clin Invest. 1993;92(5):2353-2359. https://doi.org/10.1172/JCI116840.
View: Text | PDF
Research Article

Limb congestion and sympathoexcitation during exercise. Implications for congestive heart failure.

  • Text
  • PDF
Abstract

During static exercise, heart failure (HF) subjects activate the sympathetic nervous system differently than normal controls. HF causes metaboreceptor desensitization with either enhanced mechanoreceptor activity or central command. In this report, we examined whether increased muscle interstitial pressure, as seen in HF, augments other neural systems. We measured muscle sympathetic nerve activity (MSNA; peroneal nerve) in 10 normals during static exercise (40% maximal voluntary grip) and posthandgrip circulatory arrest (PHG-CA). This was repeated after venous congestion (VC; cuff inflation to 90 mmHg). VC increased forearm volume (plethysmography) by 4.7%. MSNA responses to exercise were greater after VC (150.5 +/- 41.8 vs. 317.3 +/- 69.9 arbitrary units; P < 0.01). However, MSNA responses during PHG-CA were not affected by VC, and 31P nuclear magnetic resonance (n = 5) demonstrated no effect of VC on pH or H2PO4-. Similar effects of VC on MSNA were noted after ischemic exercise (n = 7), excluding flow alterations as the explantation. VC probably sensitized mechanically sensitive afferents since MSNA during involuntary biceps contractions increased after VC (n = 6), and skin sympathetic nerve responses during handgrip, an index of central command, were not increased by VC (n = 6).

Authors

J McClain, C Hardy, B Enders, M Smith, L Sinoway

×

Full Text PDF | Download (1.47 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts