Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction.
Y Terada, … , T Yang, F Marumo
Y Terada, … , T Yang, F Marumo
Published November 1, 1993
Citation Information: J Clin Invest. 1993;92(5):2339-2345. https://doi.org/10.1172/JCI116838.
View: Text | PDF
Research Article

Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction.

  • Text
  • PDF
Abstract

Recent studies have revealed that arginine vasopressin (AVP) has at least two types of receptors in the kidney: V1a receptor and V2 receptor. In this study, microlocalization of mRNA coding for V1a and V2 receptors was carried out in the rat kidney using a reverse transcription and polymerase chain reaction. Large signals for V1a receptor PCR product were detected in the glomerulus, initial cortical collecting duct, cortical collecting duct, outer medullary collecting duct, inner medullary collecting duct, and arcuate artery. Small but detectable signals were found in proximal convoluted and straight tubules, inner medullary thin limbs, and medullary thick ascending limbs. Large signals for V2 receptor mRNA were detected in the cortical collecting duct, outer medullary collecting duct, and inner medullary collecting duct. Small signals for V2 receptor were found in the inner medullary thick limbs, medullary thick ascending limbs, and initial cortical collecting duct. Next, we investigated V1a and V2 receptor mRNA regulation in the dehydrated state. During a 72-h water restriction state, the plasma AVP level increased and V2 receptor mRNA decreased in collecting ducts. In contrast, V1a receptor mRNA did not change significantly. Thus, the two AVP receptor subtypes are distributed differently along the nephron, and these mRNAs are regulated differently in the dehydrated state.

Authors

Y Terada, K Tomita, H Nonoguchi, T Yang, F Marumo

×

Full Text PDF | Download (1.88 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts