Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116826

Opioid antagonist diprenorphine microinjected into parabrachial nucleus selectively inhibits vasopressin response to hypovolemic stimuli in the rat.

Y Iwasaki, M B Gaskill, R Fu, C B Saper, and G L Robertson

Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Iwasaki, Y. in: PubMed | Google Scholar

Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Gaskill, M. in: PubMed | Google Scholar

Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Fu, R. in: PubMed | Google Scholar

Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Saper, C. in: PubMed | Google Scholar

Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Robertson, G. in: PubMed | Google Scholar

Published November 1, 1993 - More info

Published in Volume 92, Issue 5 on November 1, 1993
J Clin Invest. 1993;92(5):2230–2239. https://doi.org/10.1172/JCI116826.
© 1993 The American Society for Clinical Investigation
Published November 1, 1993 - Version history
View PDF
Abstract

Subcutaneous injection of the potent, nonselective opioid antagonist diprenorphine inhibits the vasopressin response to acute hypovolemia. To determine if this inhibition is due to antagonism of opioid receptors in brain pathways that mediate volume control, we determined the vasopressin response to different stimuli when diprenorphine or other opiates were injected into the cerebral ventricles, the nucleus tractus solitarius (NTS), or the lateral parabrachial nucleus (PBN) of rats. We found that the vasopressin response to hypovolemia was inhibited by injection of diprenorphine into the cerebral ventricles at a dose too low to be effective when given subcutaneously. This response also was inhibited when a 20-fold lower dose of diprenorphine was injected into the PBN but not when it was injected into the NTS. The inhibitory effect of diprenorphine in the PBN was not attributable to a decrease in osmotic or hypovolemic stimulation and did not occur with osmotic or hypotensive stimuli. Injecting the PBN with equimolar doses of the mu antagonist naloxone, the delta antagonist ICI-154,129 or the kappa-1 agonist U-50,488H had no effect on basal or volume-stimulated vasopressin. We conclude that the inhibition of vasopressin by diprenorphine is due partially to action at a novel class of opioid receptors that transmit volume stimuli through the PBN.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2230
page 2230
icon of scanned page 2231
page 2231
icon of scanned page 2232
page 2232
icon of scanned page 2233
page 2233
icon of scanned page 2234
page 2234
icon of scanned page 2235
page 2235
icon of scanned page 2236
page 2236
icon of scanned page 2237
page 2237
icon of scanned page 2238
page 2238
icon of scanned page 2239
page 2239
Version history
  • Version 1 (November 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts