Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116727

Activin A: an autocrine inhibitor of initiation of DNA synthesis in rat hepatocytes.

H Yasuda, T Mine, H Shibata, Y Eto, Y Hasegawa, T Takeuchi, S Asano, and I Kojima

Cell Biology Research Unit, Gunma University, Maebashi, Japan.

Find articles by Yasuda, H. in: JCI | PubMed | Google Scholar

Cell Biology Research Unit, Gunma University, Maebashi, Japan.

Find articles by Mine, T. in: JCI | PubMed | Google Scholar

Cell Biology Research Unit, Gunma University, Maebashi, Japan.

Find articles by Shibata, H. in: JCI | PubMed | Google Scholar

Cell Biology Research Unit, Gunma University, Maebashi, Japan.

Find articles by Eto, Y. in: JCI | PubMed | Google Scholar

Cell Biology Research Unit, Gunma University, Maebashi, Japan.

Find articles by Hasegawa, Y. in: JCI | PubMed | Google Scholar

Cell Biology Research Unit, Gunma University, Maebashi, Japan.

Find articles by Takeuchi, T. in: JCI | PubMed | Google Scholar

Cell Biology Research Unit, Gunma University, Maebashi, Japan.

Find articles by Asano, S. in: JCI | PubMed | Google Scholar

Cell Biology Research Unit, Gunma University, Maebashi, Japan.

Find articles by Kojima, I. in: JCI | PubMed | Google Scholar

Published September 1, 1993 - More info

Published in Volume 92, Issue 3 on September 1, 1993
J Clin Invest. 1993;92(3):1491–1496. https://doi.org/10.1172/JCI116727.
© 1993 The American Society for Clinical Investigation
Published September 1, 1993 - Version history
View PDF
Abstract

The present study was conducted to examine the effect of activin A on growth of rat hepatocytes. EGF induced a 10-fold increase in DNA synthesis as assessed by [3H]thymidine incorporation in cultured hepatocytes. When activin A was added together with EGF, DNA synthesis induced by EGF was markedly inhibited. Inhibition was detected at a concentration of 10(-10) M, and 5 x 10(-9) M activin A almost completely blocked EGF-mediated DNA synthesis. Similarly, activin A completely blocked DNA synthesis induced by hepatocyte growth factor/scatter factor. Activin A was capable of inhibiting EGF-mediated DNA synthesis, even when added 36 h after the addition of EGF. With the same time interval, TGF-beta also blocked EGF-induced DNA synthesis. Although both activin A and TGF-beta inhibited growth of hepatocytes in a similar manner, either activin A or TGF-beta did not compete with each other in their binding when assessed by competitive binding using an iodinated ligand. When hepatocytes were incubated with EGF, release of bioactivity of activin A into culture medium was detected after 48 h or later. Activity of activin A was released from parenchymal cells but not from nonparenchymal cells. mRNA for beta A subunit of activin was detected only slightly in unstimulated hepatocytes, but markedly increased at 48 h after the addition of EGF. To determine whether endogenously produced activin A affects DNA synthesis, we examined the effect of follistatin, an activin-binding protein that blocks the action of activin A. An addition of follistatin significantly enhanced EGF-induced DNA synthesis. Finally, in partial hepatectomized rat, expression of mRNA for beta A subunit in liver was markedly increased 24 h after the partial hepatectomy. These results indicate that activin A inhibits initiation of DNA synthesis in hepatocytes by acting on its own receptor and that activin A acts as an autocrine inhibitor of DNA synthesis in rat hepatocytes.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1491
page 1491
icon of scanned page 1492
page 1492
icon of scanned page 1493
page 1493
icon of scanned page 1494
page 1494
icon of scanned page 1495
page 1495
icon of scanned page 1496
page 1496
Version history
  • Version 1 (September 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts